リメッシュ機能を有する RBSM による高強度コンクリートの ひび割れ面せん断伝達挙動解析

> 名古屋大学大学院 学生会員 〇井熊 晃司 名古屋大学大学院 正会員 山本 佳士,中村 光,三浦 泰人

1. はじめに

剛体バネモデル (RBSM) は、対象を剛体要素と要素 境界面に配置したバネの集合として離散化する手法で、 要素境界面のバネに塑性、軟化等の非線形構成モデル を適用することにより、コンクリートの引張破壊や、 せん断すべり破壊等の不連続挙動を簡便に表現するこ とができる.一方で、高強度コンクリートのひび割れ 面は、骨材が割れることに起因して、普通強度コンク リートと比較して平滑になり、せん断伝達能力が低下 することが知られている.しかしながら、従来の RBSM では、ランダム形状の要素界面に沿ってひび割れが進 展するため、高強度コンクリートの平滑なひび割れを 再現できない.そこで、本研究では応力状態に応じて RBSM 要素のリメッシュを行い、載荷過程において、 ひび割れ面形状の再現性を高精度化する手法を開発し

た.また開発した手法を用いて高強度コンクリートの ひび割れ面せん断伝達挙動解析を行い,開発手法の再 現性を検証した.

2. 解析手法

提案する解析手法の概要を図-1に、フローを図-2に 示す.提案手法では、まず、従来のRBSMと同様に解 析対象をボロノイ分割によってモデル化し、バネには 著者らが提案している非線形構成モデル¹⁾を導入する. この非線形構成モデルと、RBSMによって導出された 剛性方程式を用いて、通常の非線形求解法を用いて収 斂計算を行い、各載荷増分ステップにおけるつり合い 解を算定する.つり合い時のバネの応力情報をもとに、 剛体要素内の応力テンソルを算出し、要素における最 大主応力を算出する.最大主応力値が、要素に設けた 引張強度に到達した場合、重心を通り、主応力方向に 垂直な面で、要素の切断を行う.

要素内の応力状態の評価には、以下の方法を用いた. まず、それぞれの要素において、重心を通り、図-3 に 一例を示すように、各軸方向に垂直な面で仮想的に要 素を切断する.この自由体の力のつり合いにより各軸 方向の切断面に作用する応力を算出し、これをそれぞ れの要素における応力テンソルとして評価する.

要素切断面には新たにバネを配置するが,引張に対 しては既に軟化が進展した状態のものを配置した.ま た,連続的なひび割れ面を再現するために,収斂計算 終了後,要素の負担する主応力が大きいものから順に 切断処理を行うものとし,隣接する要素が既に切断さ れている場合には,隣接する要素の切断面を基準とし て切断処理を行った.

キーワード RBSM, リメッシュ,高強度コンクリート,せん断伝達,ひび割れ進展 連絡先 〒464-8603 愛知県名古屋市千種区不老町 工学部9号館 526 号室 TEL 052-789-4484

3. 高強度コンクリートのひび割れ面せん断伝達挙動 解析

(1) 実験概要および解析概要

長谷川らによって行われた実験²⁾を対象として解析 を行った.供試体概要を図-4 に示す.コンクリートの 圧縮強度は132.3MPa である.載荷は、切欠き部分に初 期ひび割れを導入するために引張載荷試験を行い、そ の後はひび割れ幅を一定に制御しながら、せん断載荷 を行っている.初期ひび割れ幅は、0.6mm、0.8mm およ び1.0mmの3ケースである.図-5に解析モデルを示す. 解析では奥行き方向の対称性を考慮した 1/2 モデルと し、切欠き近傍の要素寸法は7.5mm とした.上下端に は載荷板を設置して、変位制御により、引張試験、お よびその後のひび割れ面せん断伝達解析を行った.

(2) 解析結果

図-6 に引張載荷試験時の引張応力-鉛直変位関係を 示す.図より,提案手法は試験値と比べ,引張強度を やや大きく評価し,また,破壊エネルギーを小さく評 価していることが分かる.要素の切断判定強度,およ びその後配置するバネの材料特性等,今後より詳細に モデルの妥当性を検証していく予定である.図-7 に引 張載荷時のひび割れ進展の過程を、図-8 にひび割れ面 の様子を示す.図中の赤色の面は、リメッシュ機能に よる要素切断面、緑色の面は既存のバネが軟化し、応 力が0まで達した面を表示している.また、図-9 に、 せん断載荷試験時のせん断応力ーせん断変位関係を示 す.従来の RBSM では、ひび割れ面の凹凸のかみ合い によって、試験値より早い段階でせん断伝達が生じて いる.一方、提案手法では、剛体要素の形状によらな い平滑なひび割れ面を再現しており、高強度コンクリ ートのすべり挙動を概ね再現している.

4. まとめ

リメッシュ機能を有する RBSM を開発した. 高強度 コンクリートのひび割れ面せん断伝達挙動解析を行う ことで,提案手法が高強度コンクリートのひび割れ面 形状およびせん断伝達挙動を再現可能であることが確 認された.

参考文献

1) 山本佳士ほか:3次元剛体バネモデルによるコンクリート 供試体の圧縮試験,土木学会論文集 E, Vol64, No.4, pp.612-630, 2008

2)長谷川了ーほか:100N/mm²を超える高強度コンクリートの ひび割れ面におけるせん断伝達挙動に関する研究,コンクリ ート工学年次論文集, Vol.26, No.2, pp.91-96, 2004

