ひび割れ面におけるせん断伝達挙動が 無筋コンクリート構造物の耐力に与える影響

北海道大学大学院	学生員(○日下部	護
北海道大学大学院	フェロー	横田	弘
北海道大学大学院	学生員	上松瀬	慈

1. はじめに

無筋コンクリートは、海岸堤防の胸壁など防災上、 国土保全上、非常に重要な機能を担っているような構 造物に用いられている.無筋コンクリート構造物にひ び割れが発生した場合、耐力の低下が懸念される.し かし、耐力に影響を与える無筋コンクリートひび割れ 面でのせん断伝達メカニズムに着目した研究は稀であ り、このような構造物の構造性能に着目した点検診断 基準についても検討が進んでいない.そこで、本研究 では、無筋コンクリート供試体のひび割れ面でのせん 断伝達挙動を実験的に検討し、せん断挙動のモデル化 を行った.また、ひび割れを有する堤防胸壁をモデル 化し、ひび割れの幅を変化させることで、ひび割れが 構造物の耐力低下に与える影響を考察した.

2. 実験概要

本検討では、中村ら¹⁾が実施した実験的検討から得 られた結果を元に、ひび割れ面におけるせん断伝達メ カニズムのモデル化を検討した.

本実験は、無筋コンクリートのひび割れ面における せん断伝達を明らかにすることを目的として行われた. 実験で用いられた供試体を図-1に示す.

せん断載荷の前に割裂載荷を行い, 図-2の破線部分 にひび割れを導入した.その後,供試体上面から拘束 荷重を作用させた状態でジャッキを用いて側面からせ ん断載荷した.ひび割れ鉛直方向の拘束荷重と,拘束 の程度をゴム板の枚数によって変化させている.各供 試体の実験条件を表-1に示す.

3. せん断挙動のモデル化

実験結果より、せん断応力はせん断方向の変位の平 方根に比例する挙動を示す.そのため、せん断方向の 変位 δ (mm)とせん断応力 τ (MPa)の関係を、せん断 伝達係数kを用いて式(1)のように表すことにした.

$$\tau = k\sqrt{\delta} \tag{1} \quad \pounds \mathfrak{G},$$

 鉄筋
 40

 200
 15

 15
 15

 40
 15

 15
 100

 150
 100

 100
 100

図-2 せん断試験方法(単位は mm)

表-1 実験条件と供試体名

ゴム板	5kN	10kN	10kN保持	20kN	20kN保持
1枚	No.1-1	No.2-1		No.3-1	
2枚	No.1-2	No.2-2	No.2-3	No.3-2	No.3-3

ここで、k(単位: N·mm^{-5/2}) は拘束条件やひび割れ幅 により変化すると推定できる. 図-3は、拘束条件ごと に分類したせん断応力とせん断方向の変位の関係の一 例を示している. また、式(1)で表した近似曲線も示す.

表-2に、各拘束条件および各ひび割れ幅によるせん 断伝達係数 k_{σ} および k_{w} を示す.このように、拘束条件 によっては精度が十分でないものの実験結果をおおむ ね再現できており、拘束条件やひび割れ幅に基づくせ ん断伝達応力を定式化できた、拘束条件による k_{σ} につ いては傾向を見ることが難しいが、ひび割れ幅は大き くなるにつれて k_{w} が小さくなる傾向が見られた、その ため、ひび割れ幅に着目して検討を進める.

キーワード せん断伝達,ひび割れ,無筋コンクリート,有限要素解析, 連絡先 〒060-8628 北海道札幌市北区北13条西8丁目 北海道大学大学院 A4-05号室 TEL 011-706-6204

表 - 2 k_oおよび k_w

	k ₀₁	k ₀₂	k ₁₀	k ₁₁	k ₁₂	k ₂₀	k ₂₁	k ₂₂
拘束荷重(kN)	0~	·10	10	10~	~20	20	20~	-30
ゴム板の枚数	1	2	2	1	2	2	1	2
k _σ	2.36	1.48	3.66	2.16	2.36	2.49	2.09	2.92
		k		k		L.	L	

	k _{w1}	k _{w2}	k _{w3}	k _{w4}
ひび割れ幅(mm)	0~0.5	0.5~1.0	1.0~2.0	2.0以上
k _w	3.20	3.16	2.39	1.70

4. 非線形有限要素解析

本解析では、ひび割れ幅と構造物の耐力との関係を 明らかにするため、図-4に示すような堤防胸壁の中央 にひび割れを有する構造解析モデルを作成し、非線形 有限要素解析を行った.ひび割れは界面要素を挿入す ることで表現し、この界面要素の構成則には式(1)のせ ん断伝達モデルを用いている.

5. 結果および考察

図-5に、中央にひび割れを有した胸壁に波力を模し た水平荷重を作用させた場合の荷重と、胸壁隅角部(図 中 A)での水平変位の関係を示す.ひび割れ幅が大き くなるにつれ、同一荷重下での構造物の変位が大きく なる傾向が得られた.

ひび割れのない場合の変位量 0.5mm に対応する荷重 値を 1 とした場合の各ひび割れ幅における荷重比を図 -6 に示す. ひび割れ幅が大きくなるにしたがって,荷 重比が低下する結果が得られた.ただ,図-5 に示すよ うに,多くの場合で最大荷重がほぼ同等となった.こ れは,ひび割れ幅が小さい場合は胸壁本体の破壊が進 行したため,耐力に大きな差が生じなかったためであ ると考えられる.

6. まとめ

実験から無筋コンクリートのひび割れ面におけるせん断伝達モデルを構築した.そして,堤防胸壁の構造 解析モデルを作成し,非線形有限要素解析を行った. その結果,ひび割れ幅が大きくなるにつれ,耐荷性能

が失われていく傾向が見られたが,ひび割れ深さを一 定と考えた場合には,その程度は小さかった.

今後の研究においては、耐力に影響を及ぼすと推察 されるひび割れ深さや寸法をひび割れ幅と関連させる ことで、無筋コンクリートの劣化度判定基準を提案す る予定である²⁾.

参考文献

1) 中村美沙子,横田弘,橋本勝文:無筋コンクリー トのひび割れ面におけるせん断伝達に関する基礎研究, 土木学会北海道支部論文報告集,No.71,(2015)

 2)古谷宏一,横田弘,橋本勝文:無筋コンクリート 海岸構造物のひび割れ幅に基づく新しい劣化度判定基 準の提案,土木学会論文集 B3, Vol.68, No.2, pp.360-365
 (2012)