## -458

# 弾性波法によるコンクリート内部の空洞情報把握に関する基礎的検討

名古屋大学大学院 学生会員 〇鈴木 理絵 名古屋大学大学院 正会員 中村 光・三浦 泰人・山本 佳士

#### 1. 序論

コンクリート中の内部欠陥の非破壊検査の代表的な 手法として打音法<sup>1)</sup>が挙げられる. 淺野ら<sup>2)</sup>によると, コンクリート内部の空洞の有無については,弾性波法 (鋼球落下)による周波数分布を健全部におけるものと 対比することによって把握可能であるということが分 かっている.しかし,空洞の大きさや深さ等の情報に ついては弾性波法で定量的に評価するに至っていない.

本研究では、様々な大きさの模擬空洞を有する供試 体および健全な供試体に鋼球打撃実験を行い、加速度 応答を用いることによってコンクリート内部の空洞の 位置・広さ・深さ・厚さというような空洞情報の評価 を実験的に試みた.

### 2. 鋼球打撃実験の概要

実験供試体の概要を図-1 に示す.供試体の寸法は長 さ 600mm,幅 600mm,厚さ 200mm である. コンク リートの圧縮強度は 32.4N/mm<sup>2</sup>,ヤング係数は 30.1kN/mm<sup>2</sup>である.また,空洞は発泡スチロールを内 部に埋設することで模擬した.

供試体は、内部に長さ 100mm, 幅 100mm, 厚さ 10mmの発泡スチロールを、表面から 30mmの位置に 埋設したものを基準とした.空洞厚さの比較を行うた めに発泡スチロールの厚さを 20mm に変更した供試体, 空洞広さの比較を行うために長さおよび幅を 200mm に変更した供試体,空洞深さの比較を行うために埋設 位置を表面から 50mm に変更した供試体を用いた.

衝撃は径 20mm のクロム鋼球(比重 7.8, 重量 32.6g) を用い,高さ 10cm から自由落下させることで与えた. 計測は加速度計を用い,図-2のメッシュの交点に設置 した.加速度計は 20kHz まで計測可能であるものを用 い,図-1における z 方向の振動を計測した.各位置で 10回計測を行い,それらを平均したデータを用いた. 鋼球は,対称性を考慮し,1~6列目は加速度計位置よ り y 軸正の方向,7~11列目は y 軸負の方向にそれぞれ 3cm 離れた位置に落下させた.また,打撃力による違 いを見るために,径 20mm のガラス球(比重 2.5,重量 9.3g)および超硬球(比重 15,重量 62.5g)を用いて,ク ロム鋼球と同様に打撃を与えた実験も行った.

#### 3. 鋼球打撃実験による空洞情報評価

## 3. 1 周波数分布による評価

各供試体中央(F6)で受信した加速度応答から得られ た周波数スペクトル分布を図-3 に示す.空洞を有する 供試体のスペクトルパワーの値は健全な供試体の値よ りも明らかに小さく,スペクトルパワーに注目するこ とで空洞の有無を把握できる可能性を示唆している. また,健全な供試体には複数のピークが存在すること に対し,空洞を有する供試体ではどれも明らかにある 一つの卓越する周波数が存在し,その卓越する周波数 は,広さが 100×100mm の空洞上では空洞の厚さや深 さに関わらず 8kHz 付近であり,空洞広さが大きくな ると 4kHz 付近に下がるという結果となった.このこ とは,鋼球打撃により生じる振動が空洞上部のコンク リートのたわみ振動であることから,面積が大きくな







〒464-8603 愛知県名古屋市千種区不老町 名古屋大学 9号館 526 TEL052-789-4484

-915-

るほど周期が長くなり、周波数が低下したと考えられ る. なお、ガラス球および超硬球での実験結果も鋼球 と同様となり、空洞が広いほど周波数が低下すること は打撃力によらないと言える.また、空洞厚さの変化 によってピーク周波数は変化しないが、空洞が厚いほ どピーク周波数前後のスペクトルが大きいことが確認 できる.このピーク周波数前後の広がりを確認するこ とで空洞厚さの推測が可能であると考えられる.また、 この広がりの傾向は、打撃力によらないことが球の種 類を変更した結果から確認された.

## 3. 2 各指標の平面分布による評価

3.1 の結果を踏まえ、図-2 で示した供試体の各点で のスペクトルパワー、ピーク周波数および周波数面積 をプロットしたものを図-4 に示す.ここで、スペクト ルパワーは各点で最も卓越している周波数でのスペク トル値の平面分布、ピーク周波数はスペクトルパワー に対応する周波数の値の平面分布を示す.また、周波 数面積は最も卓越する周波数から±2kHz の範囲の周波 数スペクトルの積算値を算出し、一つの供試体内で最 も小さい値が1 となるように正規化した値である.な お、加速度計の計測可能範囲を考慮し、すべての指標 について 20kHz までのデータで算出した値を用いた.

図-4 から、どの指標においても、一つの供試体内で 健全部との値が明らかに異なる箇所が存在し、空洞の 有無と位置は確認可能であると言える.

空洞広さの変化について、どの指標でも空洞が広い ほど広範囲で健全部との違いが表れており、3つの指標 すべてが有用であると考えられる.さらに、ピーク周 波数に関しては、空洞が広くなるにつれ小さくなるこ とから、空洞上の一点の打撃情報だけ用いたとしても、 その広さや他の空洞との広さの違いを把握することが できると言える.一方で,スペクトルパワーに関して は空洞が広く,欠陥が大きくなるほど見えにくいとい う結果になり,空洞の広さと比例しないことに注意が 必要である.

空洞厚さの変化については、周波数面積を確認する と、空洞が厚いほどはっきりと空洞の存在が確認でき る.このことは、複数の空洞上での周波数面積を比較 することで空洞厚さを相対的に把握できることを示唆 している.空洞広さと同様にスペクトルパワーに関し ては空洞が厚く、欠陥が大きくなるほど見えにくいと いう結果になった.

空洞深さの変化については、スペクトルパワーを確 認すると、空洞が浅いほど空洞の存在が確認しやすい. このことは、複数の空洞上でのスペクトルパワーを比 較することで空洞深さを相対的に把握できることを示 唆している.

#### 4. まとめ

本研究により得られた知見を以下に示す.

空洞の広さは各指標の平面分布図によって把握可能 であり、特にピーク周波数に関しては一点の打撃情報 だけで空洞広さを推測することができる.空洞深さは スペクトルパワー,空洞厚さは周波数面積の平面分布 図を確認し、大きさの異なる空洞との比較を行うこと で相対的に空洞情報を把握することができる.

#### 参考文献

1)鎌田敏郎, 淺野雅野, 国枝稔, 六郷恵哲: コンクリート表 層部欠陥の定量的非破壊検査への打音法の適用, 土木学会論 文集, No.704, pp65-79, 2002.

2) 淺野雅則・鎌田敏郎・六郷恵哲・遠藤友紀雄:コンクリート打撃音の周波数特性とその欠陥評価への適用,コンクリート工学年次論文集,vol.24, No.1, pp. 1545-1550, 2002.

