X線CT法による水中不分離性コンクリートの空隙、粗骨材、モルタル分布について

安藤ハザマ 正会員 熊本大学 工学部 東芝 〇 村上 祐治, 正会員 澤田 純之 尾原 祐三, 学生会員 新谷 廉 正木 洋

1. まえがき

水中不分離性コンクリートを用いて鋼管内(ダウンカマという)に充填を行う方法を検討している.これは水中不分離性コンクリートを外側に打込み,その圧力によって鋼管の中にコンクリートを流動させ,ダウンカマの止水などを行う方法である.本論文はダウンカマの充填性を確認するコンクリート打込み試験を行うとともに,ダウンカマ外側および内側からコアを採取して力学特性の確認, X線 CT 法によりコンクリートの内部状態の把握を行ったものである.

2. コンクリート打込み試験

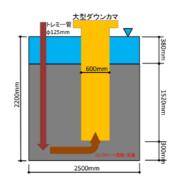
水中不分離性コンクリートの配合[1]を表1に示す. なお、セメントは中庸熱ポルトランドセメントを、細骨材に電炉酸化スラグを使用している.

コンクリートを打込んだ水槽は図 1 に示すように長さ $2.5 \times$ 幅 $2.1 \times$ 高さ 2.2 m であり、水位は常時 2.2 m である。水槽内に ϕ 600 mm の ダウンカマと称する円筒形鋼管口が水槽底版から高さ 300 mm に設置されている。

コンクリートは φ 125mm (5 インチ) のトレミー管により打込み, トレミー管のコンクリートに水が触れないようにコンクリート中に 300mm 挿入して打込んだ. コンクリート打込み高さ速度は 5mm/分 (300mm/h) とした. トレミー管から打込まれたコンクリートは水 中を 1.1m 程度流動してダンウカマ内に到達して,ダウンカマ内を充 填することになる.

3. 試験結果

3.1 コンクリート打込み結果


コンクリート打込み履歴を図 2 に示す。なお、コンクリートのスランプフローは $550\sim574$ mm であった。コンクリート打込み高さ速度は 4.37mm/分であった。ダウンカマ外側が 1831mm で、内側が 1632mm であり、内外の打込み高さの差は 199mm であった。

3.2 コンクリートの力学特性

コンクリートの超音波伝播速度分布を図3に、コンクリートの圧縮強度分布を図4に示す. ダウンカマ内外の差はほ

表1 水中不分離性コンクリートの配合

	租骨材 最大寸 法 Gmax	スラン プフ ロー (mm)	空気量 (%)	水セメ ント比 (W/C) (%)	フライ アッ シュ置 換率 (F/C+F 、%)	細骨 材率 (s/a) (%)	単位量(kg/m³)										
							水 (W)	結合材			細骨材		粗骨材			AE減水	
								C+F	セメント (C)	フライ アッ シュ (F)	砕砂 (S2)	酸化 スラグ	20-5 (G2)	増粘剤 (SP- 12)	高性能 AE滅水 剤 (SP8SV)	あるい	遅延剤 (No.89)
	20	550± 50	3.0	65.0	30	45.0	210	323	226	97	526	305	950	2.3	6.46	0.81	1.94

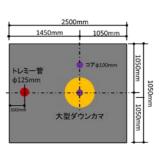


図1 ダウンカマ水槽(左側:側面、右側:平面)

写真1 コンクリート打込み状況

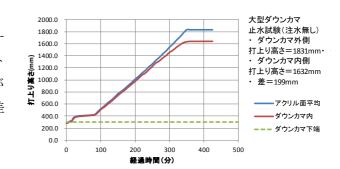


図2 コンクリート打込み履歴

キーワード 水中不分離性コンクリート, X線 CT 法, CT 値, 空隙量, 粗骨材量, モルタル量 連絡先 〒305-0822 茨城県つくば市苅間 515-1 安藤ハザマ技術研究所 TEL: 029-858-8813

とんどないが、打込み高さが増大するにしたがい、コンクリートの超音波伝播速度は低下する傾向を示しており、表面部分は急激に低下する傾向が確認された。ダウンカマ外側の圧縮強度は平均 32.8N/mm²であるが、内側の圧縮強度は 27.8~32.9N/mm²であり、内側のコンクリート強度は外側の約 90%の強度であった。

3.3 X線CT法による断面撮影

X線 CT 法によって撮影した X線 CT 画像から空隙・粗骨材・モルタル分布を明らかにした. 外側・打込み高さ 450mm 位置の X線 CT 法により撮影した画像を図 5に示す. X線 CT 画像は 2048×2048 であり,各画素は CT 値が与えられている. 画素データのヒストグラムを図 6に示す. 画像を空隙部,粗骨材部,モルタル部に区分するしきい値を求め,各部の面積を求めた[2].

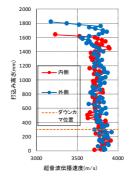


図3 超音波電波速度分布

図4 圧縮強度分布

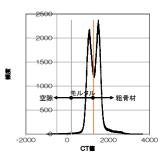
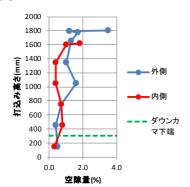
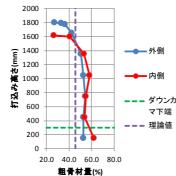




図5 X線CT画像

図6 CT 値ヒストグラム

画像面積からカマ内側に関する空間を を対する空間を 関に関する型が 関に関する型が を変えるででである。 でででは、 ででは、 でいる。 でい

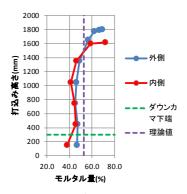


図7 ダウンカマ内外の空隙量、粗骨材量、モルタル量の分布

するにしたがい、空隙量は増加し、表面近傍で急激に増加している。粗骨材量は $45\sim50\%$ であるが、打込み高さ 1.5m を超えると急激に少なくなり、これに呼応してモルタル量が増加している。図 4 に示す圧縮強度分布は打込み高さ 1.7m 付近で低下しており、これは骨材量低下と、モルタル量の増加によると考えられる。

4. まとめ

水中不分離性コンクリートの打込み試験を行い,下記の結論を得た.

- (1) ダウンカマ外側および内側の打込み高さはそれぞれ 1831mm, 1632mm であり, 内外差は 199mm であった. また, コンクリートの超音波伝播速度は打込み高さが増大するにしたがい, 低下傾向を示し, 表面 部 100~200mm の近傍で急激に低下することが確認された.
- (2) 圧縮強度は内側の方が低く,外側の90%程度であった.圧縮強度分布は両側とも表面部付近で低下した.
- (3) X線CT法により空隙量,粗骨材量およびモルタル量を求め、その分布は打込み高さの増大につれて空隙が大きく、粗骨材量は少なく、モルタル量が多くなる傾向を示した.

この成果は、経済産業省/廃炉・汚染水対策事業費補助金により得られたものです.

参考文献

- [1] 澤田純之他:長時間流動性を保持した水中不分離性コンクリートの開発,土木学会第70回年次講演会 V-247, PP493-494, 2015年
- [2] 天明敏行: X線 CT 法のコンクリート診断への適用に関する基礎的研究, 熊本大学学位論文, 2009年3月