高流動コンクリートのレオロジー定数に関する検討

隆之	○早川	正会員	太平洋セメント株式会社
嘉史	扇	正会員	太平洋セメント株式会社
村 充	谷林	正会員	太平洋セメント株式会社
義智	山田	正会員	琉球大学 工学部環境建設工学科

1. はじめに

セメントペースト(以後ペーストと略す)の流動特性は、コンクリートの流動特性と強い関係性があることから、ペースト を基軸としたレオロジーに関する研究が広く行われている.本研究では、一般的なスランプコンクリートを対象とした山 田らの手法 1)を応用して高流動コンクリートのレオロジー定数を推定し、実測したフロー特性との関係性を検討した.

2. 各種レオロジー評価試験の概要

2.1 使用材料および練混ぜ方法

使用材料を表1に示す.コンクリートの練混ぜは,強制 二軸ミキサ(60L)を用い,モルタルを120秒間練混ぜ, 粗骨材投入後90秒間練混ぜた後,300秒間静置し,20 秒間練混ぜて排出した.ペーストおよびモルタルの練混 ぜは,ホバートミキサ(5L)を用いて行い,練混ぜ時間は, コンクリートと同じ530秒間とした.

2.2 モルタル・コンクリート配合およびフロー試験

配合とフロー試験結果を表2に示す.コンクリートは単 位粗骨材かさ容積が異なる5配合とし、モルタルは各コ ンクリートから粗骨材を取り除いた配合とした.まず,C-3 のスランプフローが60±5cmとなるようSP添加率を選 定(C×1.05%)し、他は同じ添加率とした.表2より、S/C の減少および単位粗骨材かさ容積の増大に伴いモルタ ルフロー、スランプフローは大きくなる傾向であった.

2.3 ペーストを用いたレオロジー評価

2.2 と同一の W/C と SP 添加率でペーストを作製しレ オロジーを評価した. 試験は外円筒回転式の回転粘度 計を用い,外円筒の回転速度を一定としペーストの流動 がほぼ定常状態となるずり時間 300 秒時点の内円筒に 作用するトルクを測定 ²し, せん断ひずみ速度とせん断 応力に変換し,ペーストの見かけの粘度を求めた.

ペーストのせん断ひずみ速度とせん断応力および見 かけの粘度の関係を図1に示す.図1より、ペーストは 降伏値が小さく、また低せん断ひずみ速度域で見かけ の粘度(せん断応力/せん断ひずみ速度)が大きく、 Bingham モデルでは流動曲線の非線形性をとらえきれ ずに降伏値を大きく評価している.このため、モルタルお よびコンクリートの流動曲線も同様に非線形となることが 予想されることから、降伏値の推定には新たな近似モデ ルの適用を検討した.

表1 使用材料

使用材料	記号	密度* (g/cm ³)	産地・製造等					
水	W	1.00	上水道水					
セメント	С	3.21	中庸熱ポルトランドセメント					
粗骨材	G	2.64	硬質砂岩砕石 2005(実積率 59.5%)					
細骨材	S	2.58	山砂(粗粒率 2.88, 実積率 67.0%)					
高性能 AE 減水剤	SP	_	ポリカルボン酸エーテル系					

*骨材の密度は表乾密度を示す.

表2 各種配合およびフロー試験結果

記号	種類	W/C (%)	W (kg/m ³)	S/C	G かさ 容積 (m ³ /m ³)	SP (C×%)	フロー (mm)	M:200mm C:500mm 到達(秒)
M-1			232	1.69	_	1.05	148	未達
M-2	71	30	242	1.56	-	1.05	232	5.3
M-3	セル		253	1.42	-	1.05	276	3.3
M- 4	110		265	1.28		1.05	281	1.8
M-5			278	1.15	-	1.05	296	1.3
C-1		ク ト 30	170	1.69	0.44	1.05	455	未達
C-2	コンク		170	1.56	0.49	1.05	550	10.4
C-3	リート		170	1.42	0.54	1.05	610	7.3
C-4			170	1.28	0.59	1.05	665	5.7
C-5			170	1.15	0.64	1.05	665	6.2

図1 ペーストにおけるせん断ひずみ速度と せん断応力および見かけの粘度の関係

3.1 モルタルおよびコンクリートの粘度式

Roscoe 式に基づくモルタルとコンクリートの粘度式を 式(1),式(2)に示す¹⁾.モルタルの粘度式は細骨材を懸 濁質とし,ペーストを懸濁媒とする.同様にコンクリートの 粘度式は粗骨材を懸濁質としモルタルを懸濁媒とする.

3. レオロジー定数の推定に関する検討

キーワード:レオロジー, ペースト, モルタル, コンクリート, 降伏値, 塑性粘度, 骨材, Bingham, Casson 連絡先:〒285-8655 千葉県佐倉市大作 2-4-2, 太平洋セメント(株) 中央研究所, TEL:043-498-3855, FAX:043-498-3849

-665-

$$\eta_m = \eta_p \left(1 - \frac{a\phi_s}{\phi_m^s} \right)^{-\beta_s} \tag{1}$$

$$\eta_c = \eta_m \left(1 - \frac{b\phi_g}{\phi_m^g} \right)^{-\beta_g} \tag{2}$$

上式で、 η_p はペーストの見かけの粘度、 η_m と η_c はモ ルタルおよびコンクリートの見かけの粘度である. ϕ_s と ϕ_g は細・粗骨材の体積分率、 ϕ_m^s と ϕ_m^g は細・粗骨材の 実積率である. β_s と β_g は細・粗骨材の形状係数で、流動 曲線の近似から求められる降伏値が、モルタルおよびコ ンクリートのフロー値を有限要素法による流動解析で表 せるよう逆解析的に求めた(β_s =3.2, β_g =2.4). また、固 体係数 *a*、*b* は今回はいずれも 1.0 とした.

3.2 各相に作用するせん断ひずみ速度

各相に作用するせん断ひずみ速度は、懸濁質が変形 せず懸濁媒で見かけのせん断ひずみ速度が生じるもの とした.ここでは、ペーストに作用するせん断ひずみ速度 $\dot{\gamma}_p$ を基準に、モルタルのせん断ひずみ速度 $\dot{\gamma}_m$ とコンクリ ートのせん断ひずみ速度 $\dot{\gamma}_c$ をそれぞれ次式で求めた¹⁾.

$$\dot{\gamma}_m = (1 - a\phi_s)\dot{\gamma}_p \tag{3}$$

$$\dot{\gamma}_c = \left(1 - b\phi_g\right)\dot{\gamma}_m \tag{4}$$

3.3 流動曲線の近似によるレオロジー定数の決定

低せん断ひずみ速度で非線形性が強く、また降伏値 が比較的小さい場合でも精度良く近似する方法として、 次式に示す Casson 式 ³⁾を用いた.

$$\sqrt{s} = \sqrt{s_c} + \sqrt{\mu_c \cdot D} \tag{5}$$

ここで、sはせん断応力、 s_c は Casson 降伏値、 μ_c は Casson 粘度(残留粘度)、Dはせん断ひずみ速度であ る. モルタルおよびコンクリートのせん断応力の平方根と せん断ひずみ速度の平方根の関係および Casson 式に よる直線近似を図 2 に示す. 点線は一般的な Casson 式による近似直線、破線は低せん断ひずみ速度域に着 目した Casson 式による近似直線であり、後者の方が低 せん断ひずみ速度域の測定結果をよく表していた.

また,降伏値は図中の破線より求めた Casson 降伏値 とし,塑性粘度は切片を Casson 降伏値で固定した Bingham 近似により求めた.算出結果を表3に示す.

表3 各試料のレオロジー定数

レオロジー	レオロジー モルタル					コンクリート				
定数	M-1	M-2	M-3	M-4	M-5	C-1	C-2	C-3	C-4	C-5
降伏値 (Pa)	38.8	16.8	12.2	8.9	6.6	129.1	68.6	58.7	55.1	54.8
塑性粘度 (Pa·s)	141.2	55.7	38.7	26.9	19.0	637.0	320.8	272.4	255.5	254.7

3.4 コンクリートのレオロジー定数とフロー特性の関係

モルタルフローとスランプフローの関係を図3に、モル タルフロー200mmとスランプフロー500mm到達時間の 関係を図4に示す.また、粗骨材体積分率と推定したレ オロジー定数およびフロー特性の関係を図5に示す.図 3、図4より、実測したモルタルとコンクリートのフロー特 性には良い相関が認められた.また、図5より、粗骨材 体積分率の増加に伴い降伏値と塑性粘度が減少する 一方、スランプフローは増大し、フロー500mm到達時間 は減少する傾向を示した.さらに、いずれの値において も粗骨材体積分率0.35程度以上でほぼ一定となること から、レオロジー定数の推定値とフロー特性との間には 一定の相関性があることが示唆された.

図5 粗骨材体積分率とレオロジー定数およびフロー特性の関係

4. まとめ

山田らの粘度式と Casson 式を応用することで粗骨材 量を変化させた高流動コンクリートのレオロジー定数を 推定し,実測したフロー特性との関係性を明らかにした.

【参考文献】

山田義智ほか:フレッシュコンクリートのレオロジー定数推定に関する基礎的研究,セメント・コンクリート論文集,Vol.66,pp.661-668,2012
東條良太ほか:セメントペーストの流動構成式に関する研究,コンクリート工学年次論文報告集,Vol.32,No.1,pp.1881-1186,2010.6
小谷スミ子ほか:高圧処理した卵黄の流動特性,日本家政学会誌,Vol.51,No.10,pp.905-912,2000