フロー試験の物理的解釈に基づくセメントペーストの粘性評価手法

東京理科大学大学院 学生会員 〇橋本 永手 東京理科大学大学院 学生会員 西村 和朗 東京理科大学 正会員 江口 康平 東京理科大学 正会員 加藤 佳孝

1. はじめに

フレッシュコンクリートの施工の合理化を図るためには、コンクリートの粘性を把握することが重要な課題の一つとされているり、コンクリートの変形挙動はビンガム流体でモデル化されることが多く、図ー1に示す「粘性曲線」の「降伏応力」および「塑性粘度」を用いて「粘性」を議論することが一般的である。粘性曲線を求める場合、一般には回転粘度計が用いられており、理論値に近い粘性曲線を得ることが可能と考えられているう。本研究では、テーブルフロー試験を用いて、簡便かつ定量的に粘性曲線を得る「フロー測定による粘性推定法」を考案し、セメントペーストで降伏応力および塑性粘度を算出した。

2. フロー測定による粘性推定法

2.1 粘性把握のためのフロー試験の物理的解釈

粘性曲線を得るには、試験体に作用するずり応力と 試験体に生じるずり速度を求めることが必要となる. 本研究では、テーブルフロー試験によって得られたフロー値を次のように物理的に解釈をすることで、ずり 応力、ずり速度に相当する物理量を求めた.

(1) ずり応力の導出

試験体に作用する力を F(N), 試験体密度を $\rho(kg/m^3)$, 試験体体積を $V(m^3)$, テーブルの落下速度を v(m/s), 力の作用時間を Δt とすると, 運動量保存より式(1)が成立

する.

$$F = \rho \times V \times v \div \Delta t \qquad \qquad \vec{\Xi}(1)$$

試験体に作用する力が、図-2のように水平方向に変換されることで、フローが広がると仮定する.この変換によって失われる力の割合を係数 Kとすると、変換後の力 $F_H(N)$ は式(2)となる.

$$F_H = F \times K = \rho \times V \times v \div \Delta t \times K \qquad \qquad \vec{\Xi}(2)$$

n 打目に試験体に作用する応力 σ_n は、n-1 打時の試験 体底面積で F_H を割ればよいから、n 打時のフロー値を L_n とすると n 打目に試験体に作用するずり応力は式(3) となる.

$$\sigma_n = F_H \div (\frac{\pi}{4} \times L_{n-1}^2)$$

$$= \frac{\rho \times V \times v}{\Delta t} \times K \div \left\{ (L_{n-1})^2 \times \frac{\pi}{4} \right\}$$

$$\vec{\Xi}(3)$$

(2) ずり速度の導出

テーブルから力を受け、試験体底面積が単位面積当たり、単位時間当たりに変化する割合をずり速度とする。 つまり、n 打時に生じるずり速度 r_n は、n 打時の試験体底面積と n-1 打時の試験体底面積の変化量を、n 打時の試験体底面積と作用時間で割ることで求まる(式(4)).

$$r_n = \frac{L_n^2 - L_{n-1}^2}{L_{n-1}^2} \div \Delta t \qquad \qquad \vec{\Xi}(4)$$

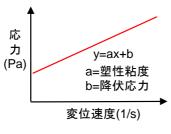


図-1 粘性曲線

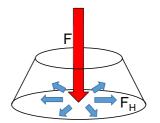


図-2 試験体に作用する外力

キーワード 粘性, ビンガム流体, 降伏応力, 塑性粘度, テーブルフロー 連絡先 〒278-8510 千葉県野田市山崎 2641 TEL04-7124-1501 nagatexxx@gmail.com

主 4	00040	試験結果
衣一	UP U40	武殿市未

打数	0	1	2	3	4	5	6	7	8	9	10
フロー(mm)	185	199	209	219	227	233	237	242	247	251	253
ずり応力(Pa)	_	61.9	53.5	48.5	44.1	41.1	39.2	37.7	36.3	34.7	33.6
ずり速度(1/s)	_	14.6	9.61	9.14	6.94	4.57	3.65	3.57	4.30	3.04	1.49

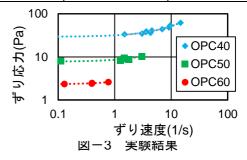
表-2 OPC50 試験結果

打数	0	1	2	3	4	5	6	7	8	9	10
フロー(mm)	265	276	282	288	296	301	302	-	_	_	1
ずり応力(Pa)	_	10.3	9.50	9.10	8.73	8.29	7.99	_	_	_	_
ずり速度(1/s)	_	3.00	1.49	1.45	1.78	1.27	0.112	_	_	_	_

表-3 OPC60 試験結果

				•		H-7-1-1					
打数	0	1	2	3	4	5	6	7	8	9	10
フロー(mm)	351	359	364	368	370	_	_	_	_	_	_
ずり応力(Pa)	_	2.59	2.47	2.42	2.35	_	_	_	_	_	_
ずり速度(1/s)	_	0.772	0.397	0.392	0.129	_	_	_	_	_	_

表-4 改良試験および回転粘度計試験結果


FI FIFTH OF THE PROPERTY OF TH										
	OPC	40	OP	C50	OP	PC60				
	本手法	运法 回転粘度 本手法 計		回転粘度計	本手法	回転粘度計				
降伏応力(Pa)	29.4	37.2	7.76	7.8	2.30	2.6				
塑性粘度(Pa・s)	2.24	2.54	0.811	0.61	0.378	0.26				

2.2 試験方法

土木学会コンクリート標準示方書に準拠し,テーブルフロー試験をした。ただし,フロー値の測定は 1 打ごととし,1 打のフロー値の変化が 2mm 以下となるまで行った。式(3),(4)によって得られた n 打目のずり応力,ずり速度から,ずり応力ーずり速度グラフを作成し最小二乗法により近似直線を得る。得られた近似直線の切片を降伏応力,傾きを塑性粘度とすることで粘性が推定できる。ただし,作用時間 Δt を変形が生じている時間とすると,試験体の塑性粘度が高ければ短く,塑性粘度が低いほど長くなるため, Δt と塑性粘度は反比例の関係にあると仮定した。この比例定数と係数 K は,既往研究の結果 11 と本手法の結果を用いて,逆解析によって,それぞれ 0.024,0.06 と設定した。また, ρ はペーストの配合から求め,v は自由落下の式から 0.443m/s である。

普通ポルトラントセメントを結合材とし、水セメント比を 40,50,60%としたセメントペースト(以下OPC40,50,60)に「フロー測定による粘性推定法」を実施し、表-1,2,3の結果を得た.これらの結果を用いて、図-3の粘性曲線を作成した.OPC40,50,60の降伏応力はそれぞれ29.4,7.76,2.30(Pa)となり、セ

メント水比の増加とともに降伏応力は小さくなった. また,塑性粘度は 2.24, 0.811, 0.378($Pa \cdot s$)となり,セメント水

比の増加とともに塑性粘度は小さくなった.これらの数値の定量的な妥当性を確認するため、本試験の結果と回転粘度計によって得られたレオロジー定数 ¹⁾を比較すると表-4 のようになる. OPC40, 50, 60%で、本手法と回転粘度計でほぼ同等の値であることが確認された.

4. まとめ

テーブルフロー試験を物理的に解釈することで,セ メントペーストの粘性評価を試みた結果,定量的に粘 性を把握できる可能性を示すことができた

参考文献

- 1) 村田二郎, 菊川浩治: 土木学会論文集, vol.1985, No.354, P109-118
- 2) JIS Z8803 液体の粘度測定方法