ジオポリマーコンクリートを用いた RC はりの曲げ挙動

九州工業大学大学院	正会員	○合田 寛基	西松建設株式会社	正会員	原田 耕司
大阪ガス株式会社	正会員	西崎 丈能	大阪ガス株式会社	正会員	大西 俊輔
九州大学大学院	正会員	佐川 康貴	九州工業大学大学院	正会員	日比野 誠

1. 目的

フライアッシュ系ジオポリマーは、優れた硫酸抵抗性ならびに耐火性を有するとともに、製造時における CO₂排 出量が少ないことから、次世代型建設材料として期待されている.本研究では、ジオポリマーコンクリートの建設 部材への適用を目指した実用研究として、ジオポリマーコンクリートを使用した RC はりの曲げ試験を実施し、そ の曲げ特性を把握するとともに、既往の曲げ、せん断耐力算定手法を適用した場合の妥当性について検討した.

2. 実験内容

表-1~表-3 に本実験における使用材料ならびにジオポ リマーコンクリート(GP)ならびに普通ポルトランドセメン トコンクリート(OPC)の配合をそれぞれ示す.ジオポリマ ー用アルカリシリカ溶液(GP 溶液)は、アルカリ水比を目標 強度(30MPa, 50MPa)に合わせて2水準とした.フライアッ シュ(FA)はJIS II 種品を、高炉スラグ微粉末(BFS)は、石こ う無添加のものを使用した.はりの主筋として、曲げ破壊 先行型には D16(SD345)を、せん断破壊先行型には D19(SD345)を、曲げ破壊先行型のせん断補強筋には D6(SD295)をそれぞれ使用した.

ジオポリマーコンクリートの練混ぜ方法は、GP 溶液以外の材料をミキサに一括投入後、30 秒間空練りし、ジオポリマー溶液を添加し2分間練り混ぜた.ミキサから排出されたコンクリートを直ちに型枠に打設した後、打設面をラップ等で被覆した.20℃3 時間の気中前置きを経て、蒸気養生環境下にて3時間かけて70℃まで昇温後、同温で18時間静置し、3時間かけて20℃まで徐冷した.その後は屋内での気中養生とした.試験材齢は約4週間とした.図-1に供試体の構造一般図を示す.供試体は、200×300×2000mmの矩形はりとし、支間長1700mm、載荷スパン300mmとした.表-4 は、材齢28日時点の圧縮強度試験結果を示す.

表-5,表-6は、曲げ破壊先行型、せん断破壊先行型の耐 荷力評価を示す.GP30ならびにGP-50のひび割れ発生荷 重は、引張強度比を考慮した計算値で概ね評価可能であっ た.主筋降伏荷重は、いずれも計算値と概ね同じであり、 曲げ耐力についても、いずれも等価応力ブロック法による 耐力算出法で評価可能であることがわかった.一方、せん 断耐力は、GP-30、OPC-30では計算値と概ね同じであった 表-1 使用材料

计 业 夕	败旦	密度	比表面積	
19 41-12	哈万	g/cm³	cm²/g	
GP 溶液	GPW	1.40	-	
フライアッシュⅡ種	FA	2.34	4040	
高炉スラグ微粉末	BFS	2.90	4180	
GP 用細骨材	S (GP)	2.60	-	
GP 用粗骨材	G (GP)	2.61	_	
普通ポルトセメント	OPC	3.16	3310	
OPC 用陸砂	S1	2.56	_	
OPC 用砕砂	S2	2.64	-	
OPC 用砕石	G1	2. 70	_	
AE 減水剤(遅延型)	М	1.07	_	

表-2 GP の配合(単位:kg/m³)

種別	GPW	FA	BFS	S(GP)	G (GP)			
GP-30	330	353	152	559	846			
GP-50	281	418	105	564	846			

表-3 OPC の配合(単位:kg/m³) W OPC **S**1 S2 G1 0PC-30 183 589 251 940 3.13 313 3) 225 0 30 120 110 0 134数83-D19 (SD345

図-1 供試体構造一般図(上:曲げ,下:せん断)

表-4 圧縮強度試験結果

GP-30	34. 0	15. 6
GP-50	55.3	23. 5
0PC-30	30. 0	30. 0

キーワード ジオポリマーコンクリート,はり,曲げ,せん断,ひび割れ分散性 連絡先 〒804-8550 福岡県北九州市戸畑区仙水町1-1 九州工業大学大学院工学研究院建設社会 TEL:093-884-3122

30 120

曲げ破壊		ひび割れ発生荷重			主筋降伏荷重			最大荷重		
先行型		計算値	実験値	実/計	計算値	実験値	実/計	計算値	実験値	実/計
供試体種別		kN	kN	-	kN	kN	-	kN	kN	-
GP-30	1	20	30	1.50	143	154	1.08	151	178	1. 18
	2	21	21	1.00	143	148	1.04	152	179	1.18
GP-50	1	32	37	1.16	146	160	1.10	157	184	1.17
	2	32	43	1.34	145	160	1.10	157	202	1.29
0PC-30	1	18	40	2. 22	148	160	1.08	150	169	1.13

表-5 耐荷力評価(曲げ破壊先行型)

表-6 耐荷力評価(せん断破壊先行型)

せん断破壊 先行型 供試体種別		主筋降伏荷重			曲げ耐力			せん断耐力			
		計算値	実験値	実/計	計算値	実験値	実/計	計算値	実験値	実/計	
		kN	kN	-	kN	kN	-	kN	kN	-	
	1	200	-	-	210	-	-	111	137	1.23	
CD 20	2	200	-	-	209	-	-	111	107	0.96	
ur-30	3	198	-	-	209	-	-	110	125	1.14	
	4	199	-	-	207	-	-	107	141	1.32	
GP-50	1	204	228	1.12	218	247	1.13	125	-	-	
	2	204	227	1.11	216	252	1. 17	123	-	-	
	3	205	234	1.14	220	-	-	133	234	1.76	
	4	204	236	1.16	220	255	1.16	131	-	-	
0PC-30	1	207	-	-	205	-	-	105	125	1.19	
	2	207	-	-	205	-	-	105	125	1.19	
	3	207	-	_	205	-	-	105	115	1, 10	

が、GP-50 では計算値を大きく超過し、曲げ破壊を示すケースも確認された.これは、高い付着強度に加え、断面剛性、載荷条件等が影響しているものと考えられる.

図-2,図-3に荷重とたわみの関係をそれぞれ示す.図-2の曲げ破 壊先行型では、全種別で曲げひび割れ発生後に剛性が低下し、主筋 降伏後に明瞭なたわみ増加を示し、上縁圧壊による終局状態まで靭 性に富む挙動を呈することが確認された.図-3のせん断破壊先行型 の OPC-30 では、斜め引張ひび割れ発生とともに直ちに終局に至っ た.一方、GP-30、GP-50 では、いずれも斜め引張ひび割れ発生時に 一旦荷重が低下したものの、その後再度増加に転じた.特に、GP-50 ではたわみが15mm 以上を示し、主筋降伏後に上縁が圧壊して曲げ 引張破壊した後に斜め引張ひび割れが卓越して終局に至った.

図-4に、曲げ破壊先行型における主筋降伏時のひび割れ図を示す. ひび割れ本数では、GP-30は OPC-30の約1.5倍となった.ひび割れ 幅では、GP-30は OPC-30よりもそれぞれのひび割れ幅が小さい. 太田らの研究¹⁾では、GP モルタルは OPC モルタルよりも付着強度 が大きいことが報告されている.以上より、GP のひび割れ幅が小さ く、ひび割れ本数が多い傾向と、高い付着強度とは相関があると考 えられ、GP は OPC と比較してひび割れ分散性が高いと推察される.

3. まとめ

本研究より,ジオポリマーコンクリートは,①曲げ耐力,せん断 耐力ともに普通コンクリートと同様の耐力設計が可能である可能性 が示唆され,②ひび割れ分散性が高いことが確認された.

図-2 荷重たわみ関係(曲げ破壊先行型)

図-3 荷重たわみ関係(せん断破壊先行型)

参考文献 1) 太田周ら:ジオポリマーモルタルと鉄筋との付着特性に関する基礎的研究,コンクリート工学年次論文集, Vol.38, 2016