熱・水分移動および硬化過程を考慮した RBSM による RC 部材のひび割れ進展挙動解析

名古屋大学大学院 学生会員 〇杉本 啓太 名古屋大学大学院 正会員 山本 佳士,中村 光,三浦 泰人

1. はじめに

各種作用下におけるコンクリート構造物のひび割 れの発生・進展の詳細情報(幅,角度,間隔等)を 精度良く予測可能な数値解析技術の開発は,コンク リート構造物の維持管理,長寿命化の観点から,あ るいは気密性など特殊な性能の評価のために非常に 重要である.コンクリート構造物の変形およびひび 割れの発生は,適切な構成モデルの選択や,温度応 力,収縮,クリープ等のモデル化により,例えば非 線形有限要素法などを用いれば,ある程度評価可能 になってきている.しかしながら,上記のひび割れ 詳細情報となると未だ再現は難しい.

そこで、本研究では、ひび割れ詳細情報を含むコ ンクリート構造物の複雑な非線形力学挙動を再現可 能な3次元剛体バネモデル(RBSM)^Dに、コンクリー ト内部の水分および熱の移動を解析可能なトラスネ ットワークモデル^Dを統合し、さらに若材齢コンク リートの材料特性変化をモデル化した解析手法の開 発を試みた.ここでは、既往の実験結果との比較に より提案手法の妥当性を検証する.

2. 解析手法

RBSM は、著者らが提案している、Voronoi 分割を 用いたランダム要素形状を適用したモデルを用いた ¹⁾.鉄筋は、はり要素を用いて離散的にモデル化し、 リンク要素を用いて RBSM 要素に結合される.ここ で、鉄筋コンクリート間の付着すべり特性も考慮し ている.本研究では、さらに、乾燥収縮、温度応力 を以下のようにモデル化した.まず、トラスネット ワークモデル²⁾を用いてコンクリート中の熱および 水分拡散問題を解くことで相対湿度および温度分布 の時間変化を求める.相対湿度および温度の変化か ら体積変化量を算定し、その体積変化量を初期ひず み問題として RBSM を用いて解析することで乾燥収 縮および温度応力を再現した.さらに、クリープは 各バネの応力増分に対して、Step by step 法により算 出している.クリープ関数は土木学会式を利用した. 硬化過程における材料特性の変化は国枝らが提案している solidification concept ³⁾を用いた.

3. 実規模 RC はりのひび割れ進展挙動解析

3.1. 実験概要

国際ベンチマーク ConCrack⁴⁾で実施された実験シ リーズのうち, 無拘束条件下で打設, 養生したのち, 載荷が行われた, 実大規模の RL1 供試体を対象とし て解析を行った.供試体概要図を図-1 に示す.供試 体は 6100×800×1600mm の RC はりであり, 打設後 63 日間の無拘束条件下で養生されたのち,載荷点に対 し 2250kN 載荷したのち除荷している.

図-1 供試体概要,モデル化位置および変位測定点 3.2.解析概要

解析モデルを図-2 に示す.計算負荷を低減するた めに 1/4 モデルとした.モデル化した位置を図-1 に 示す.比熱および熱膨張係数は材齢 28 日のコンクリ ートのものを適用した.水分移動解析および乾燥収 縮ひずみの評価に関するパラメータは,実験で実施 された試験結果と一致するようキャリブレーション して決定している.また実験ではコンクリートの断

図-2 解析モデル

キーワード RBSM, ひび割れ,温度応力,若材齢,マスコンクリート
連絡先 〒464-8603 愛知県名古屋市千種区不老町工学部9号館9-526 名古屋大学大学院 TEL052-789-4484

熱温度上昇を計測しており,解析では,水和発熱-時間関係の試験結果の近似式を適用した.

3.3.解析結果

図-3 に載荷段階における荷重-変位関係を示す. ここで、図-1 に示す P 点は変位測定点である. 解析 は実験における初期の曲げ剛性および最大変位を精 度よく再現している.

図-4 に実験および解析における最大荷重時の供試 体表面のひび割れ性状を示す.図には,硬化過程の 材料特性変化を考慮していない結果も示している. 実験では4本のひび割れが確認されているが,硬化 過程を考慮しない場合,ひび割れ本数を過大評価し ているのに対し,硬化過程を考慮した解析では5本 にひび割れ本数を抑えられており,概ね実験結果を 再現していることが分かる.

図-5 に温度分布および部材軸方向の垂直応力分布 (変形倍率100)を示す.水和発熱に伴う温度膨張によ り,供試体表面には内部拘束に起因して引張応力が 生じている様子が確認できる.硬化過程の材料特性 の変化を考慮した場合,収縮過程では膨張時よりも ヤング係数が増加しているため,温度変化による収 縮が完了した後に表面には圧縮応力が残留している 様子が確認できる.この結果,硬化過程を考慮した 場合には,表面におけるひび割れ進展が抑えられ, 実験のひび割れに近い性状を再現できた.

4. まとめ

RBSM に乾燥収縮, 温度応力, クリープ, 硬化過 程を考慮した材料特性の変化を考慮した解析手法を 開発するとともに, 実規模 RC はりを対象として解 析を行い, 提案手法の妥当性を検証した. 開発した 手法は, 乾燥収縮およびクリープに伴う, マクロな 変形情報のみならず, ひび割れ幅, 間隔等の詳細情 報を再現可能であることが分かった.

参考文献

1)山本佳士ほか(2008):3次元剛体バネモデルによるコ ンクリート供試体の圧縮試験,土木学会論文集 E, Vol64, No.1, pp612-630.

2)野城良祐(2004): 複合作用を考慮した RC 構造物の耐 久性・構造性統合解析システムの開発,修士論文. 3)国枝稔ほか(2007): 若材齢コンクリートの硬化過程お よび載荷履歴を考慮したひび割れ構成則に関する研究, 土木学会論文集 Vol.63, No.1, pp.127-142. 4)Marco di Prisco(2014): Control of cracking of RC structures:CEOS.fr international benchmark, Vol.18, No.7-8, European Journal of Environmental and Civil Engineering, Taylor & Francis.

図-3 荷重-変位関係

図-4 表面ひび割れ性状

図-5 供試体表面の温度と軸応力