超高強度繊維補強コンクリート中の繊維の配向と曲げ破壊挙動の関係の検討

岐阜大学大学院	学生会員	\bigcirc	河村	有紀
岐阜大学大学院	学生会員		石河	義希
岐阜大学	学生会員		周	波
岐阜大学	正会員		内田	裕市

1. はじめに

短繊維補強コンクリート(FRC)に関する研究は古くか ら行われており,ことに最近はひずみ硬化型のセメント複 合材(SHCC)や超高強度繊維補強コンクリート(UFC)が 開発,実用化され,国内外において活発に研究が行われて いる。しかしコンクリートあるいはモルタル中の繊維の分 散,配向の評価とそれが力学挙動に及ぼす影響に関しては, FRCが登場して以来,今日に至るまで重要な課題として認 識されてはいるが,未だ解決されていない問題である。こ れはコンクリート中の繊維の分散・配向を観察することが 難しく,さらに現状では打込み時に繊維の分散・配向を制 御する技術が存在しないためである。

そこで本研究では、UFC を対象として UFC 中の繊維の 配向と曲げ破壊挙動の関係を検討することを目的とした。 実験では2種類の試験体(壁状・板状)を作製し、硬化後 に所定の位置で切断した。切り出した試験片をX線CTシ ステムにより繊維の配向の観察を行い、その後切欠きはり の3点曲げ載荷試験を行った。

2. 実験概要

2.1 使用材料および配合

本実験で使用した UFC は市販のプレミックスタイプの ものであり,材料および配合は仕様通りである。φ0.2×15mm の鋼繊維を体積で2.0%混入させた。またフロー値は打込み 時の0打フローがそれぞれ210mm,280mm となるように 減水剤の量を調整した。

2.2 試験体の種類および作製

試験体の型枠は 100×400×1000mm (壁状), と 400×100×1000mm (板状)の2種類を使用した。試験体の 種類を表-1に示す。練り混ぜ後, UFCの注ぎ口を型枠の片 端に固定し UFC を型枠内で流動させて打込んだ。養生は打 込み後 24 時間は打込み面をラップで覆った状態で 20℃の 気中養生を行い,その後90℃の蒸気養生を48時間行った。

2.3 試験体の切断(試験片の作製)

養生終了後、コンクリートカッターを用いて各試験体を 図-1のように切断した。

2.4 X線CTシステムによる観察

X線 CT システムによる観察には Y.CT Precistion S を用 いた。X線管電圧 200kV, 管電流 600 μ A として, スライ ス厚 0.15mm で CT スキャンを実施した。その後 VGStudioMAX を用い, 取得した CT 画像から 3D 画像を生 成した。また, コンクリートマトリクスと鋼繊維の密度が 異なることを利用し, マトリクスから鋼繊維を識別するた めに単一のグレーしきい値を使用して鋼繊維のみの画像を 作製した。

キーワード 繊維補強コンクリート,超高強度繊維補強コンクリート,繊維の配向,X線CT,曲げ特性

連絡先 〒501-1193 岐阜市柳戸1番1 岐阜大学大学院工学研究科 社会基盤工学専攻 TEL 058-293-2424

-111

2.5 曲げ試験

X線CTシステムによる繊維の配向の観察後に切欠きを 設け、切欠きはりの3点曲げ載荷を行い、曲げ応力-開口 変位曲線を計測した。試験片の寸法は50×50×200mmで あり、載荷スパンを150mmとした。試験片の番号を図-2 に示す。切り欠きは面外曲げを受けることを想定して設け

(図-2 中の赤線),切り欠きの深さはリガメントが 40mm になるように調整した。また計測結果の整理の際には,試 験体の対称性を考慮し同一条件で2体あるものは平均の値 で示した。

3. 実験結果

X線CTシステムによる繊維の配向の観察結果を図-3に 示す。試験体A,Bでは流動方向に対して平行面を,試験 体C,Dでは流動方向に対して水平面の観察結果である。 図中の赤線はその箇所での繊維の主な配向を示している。 曲げ試験結果を図-4から図-7に示す。

フローが小さい試験体 A では、繊維が型枠底面から試験 体上方に向かって放物線状に立ち上がる様子が観察された。 曲げ試験結果をみると、底面(A7)から打設面(A1)にい くにつれて最大応力は 13 N/mm²から 46 N/mm²に増加す る。フローが大きい試験体 B では、試験体 A と異なり、繊 維の規則的な配向は見られないが、断面に対してより垂直 に配向する繊維が多く見られる試験片(B7, B2)の最大応 力は 40 N/mm²前後と高く、垂直に配向する繊維が少ない 試験片(B5, B6)では最大応力は 25 N/mm²程度と小さく なった。

一方,板状の試験体 C, D ではフローの大きさによる繊 維の配向への顕著な影響は見られず,いずれも投入口を中 心として円弧状に配向する様子が観察された。すなわち試 験体中央から側面にいくにつれて断面に対してより垂直に 配向する繊維が多くなる。曲げ試験結果をみると,試験体 中央から側面(1→4,5→8)にいくにつれて最大応力は大 きくなり,断面により垂直に配向する繊維が増加するほど 最大応力は大きくなる。試験体の打設面側(1~4)と底面 側(5~8)では,底面側のほうが打設面側より最大応力は 20 N/nm²以上大きくなり,フローが大きい試験体 D のほ うがその傾向は大きくなった。また,全体的に試験体 D の ほうが応力は大きくなった。この理由としてフローが大き い方が型枠の影響により流動方向に平行に配向する繊維が 増加するためだと考えられる。

4. まとめ

本研究で得られた主な結果は以下の通りである。

(1) UFC 中の繊維の配向はフローが小さいほうが投入口 から流動方向に対して平行面では放物線状に,水平面では 円弧状に配向する傾向が顕著になった。

(2)曲げ試験時の応力の差は X 線 CT システムによる繊維の配向の観察結果と対応しており、断面に対して垂直に 配向する繊維が多いほど曲げ応力は大きくなった。

-222-