PS-WL で採取した岩石試料の品質及び強度・変形特性と連続打撃貫入抵抗の関係

(株)興 和 正会員 ○中野 義仁 鉱研工業(株) 正会員 柴田 東, 今村 大介

1.はじめに

山岳トンネルでは、施工中に切羽前方の詳細な地盤情報を得ることを目的にして先進ボーリング調査が行われており、その 調査にはロータリーパーカッションドリル(RPD)を利用したパーカッションワイヤーラインサンプリング工法(PS-WL)^Dによる コアボーリングが多用されている.さらに、連続打撃動的貫入試験を組み合わせることにより、ボーリングコア(コア試料)の 採取に加え、連続打撃貫入抵抗(P値)から深度方向の硬軟変化も評価することが可能^{2,3}である.PS-WLで採取されるコア試料 は、打撃を伴う削孔であるため、節理が発達した岩盤では礫状になることが多いものの、節理が少ない均質な岩盤では棒状コ アも採取され、物性値を得る目的で室内試験に利用されている.しかし、打撃掘削によるコア試料の乱れの影響については十 分に検討されていない.

本稿では、山岳トンネルの先進調査において PS-WL で採取した岩石試料に対する一軸圧縮試験から得られる強度・変形特性を利用し、コア試料の乱れを評価する. そして、乱れの少ないコア試料の強度・変形特性と P 値の関係について検討する.

2.PS-WLと連続打撃動的貫入試験の方法

連続打撃動的貫入試験を併用した PS-WL の概念図を図-1 に 示す. PS-WL は, RPD による打撃を伴う急速削孔下でもコア 試料が採取できるサンプリング工法であり,先端サンプラーの 着脱に水圧を利用したワイヤーライン方式を採用することで 作業の効率化を図っている¹⁾. このような工夫から,同工法に よる 100m の削孔は約 36 時間で終えることができる.また,連 続打撃動的貫入試験は,削孔中の貫入時間,打撃油圧,回転油 圧,給進油圧を計測し,式a)に示すように各エネルギーを評価 して P 値を求める試験^{2,3}であり, PS-WL によるコア採取と同 時に深度 1~1.5m 間隔で実施している.

3. 一軸圧縮試験結果

全国9箇所(調査地 a~i)の山岳トンネル _ において PS-WL で棒状に採取したコア試 _ 料による岩石の一軸圧縮試験(JGS 2521)の _ 結果を表-1 に示す.また,一部試料では _ パルス透過法による超音波速度測定(JGS _ 0172)による P 波速度(V_p)と S 波速度(V_s)も _ 示している.なお,一軸圧縮試験の軸ひず _ みは,ひずみゲージを用いて測定している. _ 表中には JGS 3811 による岩盤の工学的分 _ 類も示しており,9箇所の山岳トンネルで _

	/ / C	く 先端ビット	(Th)						
RPD	泥岩 /砂/ ((PS89)	Acroh						
日本 切羽	」 /岩/ (A CONTRACT						
		$\langle \rangle$	- Ander						
		>*							
P值(10000	*1	\rightarrow							
$(\square/30 \text{cm})$ 5000	man have) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	外径:101mm コア径:45mm						
0	10 20	90 10	0						
深度, z (m)									
図-1.PS-WLと連続打撃動的貫入試験の概念図									
P $ia = \frac{\Sigma E}{1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$	— ·····a)								
基準l打撃エネルキー	• ′								

 $\sum C_{\rm r}$, $\Sigma E = E_{\rm p} + E_{\rm R} + E_{\rm v}$

- E_p: 所定の貫入長で測定した打撃回数×試験時の打撃油圧から評価さ れる1打撃エネルギー(打撃回数は、貫入時間と打撃密度より算出) E_R: 試験時の回転油圧から評価される回転エネルギー
- E_v: 試験時の給進油圧から評価される押込みエネルギー
- 基準1打撃エネルギー:打撃油圧が10.5MPa時の1打撃エネルギー

調査地	岩種	ρ_t (g/cm ³)	V _p (km/s)	V _s (km/s)	q_u (MN/m ²)	$E_{s, 50}$ (MN/m ²)	P値 _(PS89) (回/30cm)	岩盤の工学的分類 (JGS 3811)
	火山礫凝灰岩	2.23~2.32	2.86~3.23	$1.08{\sim}1.37$	13.3~22.5	5282~11186	439~583	SM-D I
a		2.19~2.35	2.30~4.04	$1.09{\sim}2.09$	12.5~79.8	5346~30530	313~1363	SM-D I , HM-B I
b	泥岩,砂岩	1.85~2.16	$1.20{\sim}1.57$	$0.58{\sim}0.72$	1.6~4.0	117~356	765~865	SM-F I
	火山礫凝灰岩 石英安山岩	2.40	-	-	44.7	7982	613	HM-A I
с		2.54	-	-	259.2	22300	7550	HM-A I
d	安山岩熔岩	2.31~2.63	-	-	28.8~179.0	2950~14500	820~1189	HF-AII
e	砂岩	2.62~2.65	4.32~5.09	2.63~2.81	90.4~186.0	36900~41500	3581~8883	HM-A I , B I
f		2.16~2.25	$1.57{\sim}2.12$	0.90~0.93	10.3~14.9	1995~2990	$1410 {\sim} 1445$	SM-D I
	頁岩	2.63	-	-	27.8	2869	2779	HM-C I
g		2.50~2.60	-	-	4.2~8.3	750~1580	825~986	SM-E I , F I
h	泥岩	2.23~2.54	-	-	0.7~2.1	262~404	358~863	SM-D I , G I
i	熔岩	2.22~2.66	1.46~6.03	0.81~3.04	26.9~157.6	9931~16963	601~1178	HM-A I , B I
	調査 地 a b c d e f f h i	正 月 調査 岩種 加 火山礫礙灰岩 b 泥岩,砂岩 C 火山礫礙灰岩 石英安山岩 石美安山岩 d 安山岩熔岩 e の沙岩 f 砂岩 g 頁岩 h 泥岩 i 熔岩	内止 μ_{i} 雪 岩種 ρ_{i} (g/cm ³) 2.23~2.32 2.19~2.35 2.19~2.35 b 泥岩,砂岩 1.85~2.16 χ 山礫凝灰岩 2.40 石英安山岩 2.54 d 安山冶礫凝灰岩 2.40 石英安山岩 2.54 d 安山冶礫縮石 2.63 e 2.62~2.65 f 砂冶 2.63 g 2.63 2.63 百 貴子 2.63 2.63 f 砂冶 2.50~2.60 h 泥泥岩 2.23~2.54 i 熔岩 2.23~2.54	空間 ρ_t (g/cm ³) V_p (km/s) a ρ_t (g/cm ³) V_p (km/s) a ρ_t (g/cm ³) V_p (km/s) b \mathcal{R} 出礫礙灰岩 $2.32 - 2.32$ $2.86 - 3.23$ $2.19 - 2.35$ $2.30 - 4.04$ $1.0 - 1.57$ ρ_t $4.85 - 2.16$ $1.20 - 1.57$ Γ $\overline{\Lambda}$ 英安山岩 2.40 $ d$ 安山岩熔石 2.54 $-$ d 安山岩熔石 $2.31 - 2.63$ $-$ e $2.62 - 2.65$ $4.32 - 5.09$ f \overline{P} 2.63 $-$ g \overline{P} 2.63 $ \overline{P}$ \overline{P} 2.63 $ \overline{P}$ $\overline{2.50} - 2.60$ $-$ h \overline{R} $2.23 - 2.54$ $-$	μ_{1} ν_{p} V_{p} V_{s} μ_{1} ν_{p} V_{s} $(km's)$ μ_{1} ν_{p} V_{s} $(km's)$ μ_{1} ν_{p} V_{s} $(km's)$ μ_{1} ν_{p} V_{s} $(km's)$ μ_{1} ν_{p} $2.37 - 2.32$ $2.86 - 3.23$ $1.08 - 1.37$ μ_{1} μ_{1} $2.19 - 2.35$ $2.30 - 4.04$ $1.09 - 2.09$ b π_{1} π_{1} $1.85 - 2.16$ $1.20 - 1.57$ $0.58 - 0.72$ μ_{1} μ_{2} 2.40 $ \mu_{1}$ μ_{2} 2.40 $ \mu_{1}$ μ_{2} $2.31 - 2.63$ $ \mu_{1}$ μ_{2} $2.31 - 2.63$ $ \mu_{2}$ μ_{2} $2.62 - 2.65$ $4.32 - 5.09$ $2.63 - 2.81$ f μ_{2} μ_{2} $1.67 - 2.25$ $1.57 - 2.12$ <	μ_{i} ν_{i} ν_{p} ν_{s} q_{u} μ_{i} ρ_{i} ν_{p} ν_{s} q_{u} μ_{i} $(g'cm^{3})$ $(km's)$ $(km's)$ $(km/s)^{2}$ μ_{i} ν_{i} $(km's)$ $(km's)$ $(km's)^{2}$ μ_{i} ν_{i} $2.32 - 2.32$ $2.86 - 3.23$ $1.08 - 1.37$ $13.3 - 22.5$ μ_{i} μ_{i} $1.9 - 2.35$ $2.30 - 4.04$ $1.09 - 2.09$ $12.5 - 79.8$ μ_{i} μ_{i} $1.85 - 2.16$ $1.20 - 1.57$ $0.58 - 0.72$ $1.6 - 4.0$ μ_{i} μ_{i} 2.40 $ 44.7$ μ_{i} μ_{i} 2.54 $ 259.2$ d μ_{i} 2.54 $ 28.8 - 179.0$ e μ_{i} μ_{i} $2.62 - 2.65$ $4.32 - 5.09$ $2.63 - 2.81$ $9.04 - 186.0$ f μ_{i} μ_{i} $2.62 - 2.65$ $4.32 - 5.09$ $10.3 - 14.9$	μ_{1} μ_{1} ν_{p} ν_{s} q_{u} μ_{1} μ_{1} $\mu_{r,s}$ μ_{1} μ_{1} ν_{p} ν_{s} q_{u} $E_{s,s}$ μ_{1} ν_{p} ν_{s} (mN/m^{2}) $E_{s,s}$ μ_{1} ν_{1} $2.3 \sim 2.32$ $2.86 \sim 3.23$ $1.08 \sim 1.37$ $13.3 \sim 2.25$ $5282 \sim 11186$ μ_{1} μ_{1} $2.3 \sim 2.32$ $2.86 \sim 3.23$ $1.09 \sim 2.09$ $12.5 \sim 7.98$ $5346 \sim 30530$ μ_{1} μ_{1} $1.85 \sim 2.16$ $1.20 \sim 1.57$ $0.58 \sim 0.72$ $1.6 \sim 4.0$ $117 \sim 356$ μ_{1} μ_{1} 2.40 $ 44.7$ 7982 c μ_{1} μ_{1} $1.20 \sim 1.57$ $0.58 \sim 0.72$ $1.6 \sim 4.0$ $117 \sim 356$ μ_{1} μ_{1} $1.25 \sim 2.16$ $1.20 \sim 1.57$ $0.58 \sim 0.72$ $1.6 \sim 4.0$ $117 \sim 356$ μ_{1} μ_{1} $2.16 \sim 2.54$ $ 2.59 \sim 2.2300$ m_{1} <t< td=""><td>μ_{μ} μ_{μ} ν_{μ} ν_{μ} ν_{μ} μ_{μ} <</td></t<>	μ_{μ} μ_{μ} ν_{μ} ν_{μ} ν_{μ} μ_{μ} <

表-1. PS-WL で採取したコア試料の一軸圧縮試験結果

得た岩石試料は,堆積岩である泥岩,砂岩,頁岩,火山礫凝灰岩(火砕岩)は軟岩(S:一軸圧縮強さ(q_u)<25MN/m²)が多く,火成 岩である石英安山岩,安山岩熔岩,熔岩では硬岩(H:q_u≧25MN/m²)が多い結果であった.

4.PS-WL で採取したコア試料の品質

ロータリーボーリング(RB)などで採取された岩石試料の乱れの評価は、堆積軟岩試料に対してであるが、谷ら⁴は図-2に示すように、一軸圧縮試験結果から接線ヤング率(E_{tan})/接線ヤング率の初期値($E_{tan,i}$)と軸差応力の極大値(q_i)の関係

キーワード:山岳トンネル,コアボーリング, PS-WL, 試料の乱れ, 連続打撃動的貫入試験

連 絡 先:〒950-0951 新潟県新潟市中央区鳥屋野4丁目7-22 (株)興和 土質試験センター TEL 025-281-5135

-833-

E_{tan, i}:接線ヤング率

の初期値

....t:接線ヤング率

の極小値

の極大値

(a) quとVpの関係

 $q_{\rm u}=0.98V_{\rm p}^{3.5}$

2 0

=0.88

1000

4

1000

100

10

1

0.1

10

*V*_p (km/s)

1 100 p:接線ヤング率

 $SRR = (E_{tan, p} - E_{tan, t}) / E_{tan, t}$

 $q_{\rm p}/q_{\rm f}$

図-2. Etan/ Etan, ~ q/ q, 関係による品質評価方法⁴

 $q/q_{\rm f}$

を検討し、乱れた試料はq/qfが小さ い領域で Etan/Etan, i が急減する特徴 を有し、剛性回復率(SRR)が大きく なることを示した. 図-3(a)と(b) は谷ら 4による図-2 の定義を硬岩 にも適用し、PS-WLのコア試料に

対する E_{tar}/E_{tan} ~ q/q_f 関係と SRR を整理した結果の一例である. q_u が 1.6MN/m² 以上の軟岩と硬岩の $E_{tar}/E_{tar,i}$ は、 q/q_f が大きい領域まで1.0前後であり、SRRも 非常に小さく、応力~ひずみ関係が qf付近までほぼ線形であることを示してお り, 乱れが少ない状態であると判断される. しかし, quが 0.4MN/m²以下の軟 岩は、 q/q_f が小さい領域で $E_{tar}/E_{tan,i}$ が急減し、SRR も乱れが少ない試料に比べて 著しく大きく、打撃掘削の影響によって乱れている可能性が大きい.

 $E_{\rm tan}/E_{\rm tan,\;i}$

1.0

 $q_{\rm f}/q_{\rm f}$

Etan, p / Etan.

Etan, t / Etan, s

(a) $E_{tan}/E_{tan,i}$ と q/q_f の関係 (a) 上_{tan} 軟岩 No. q " 2 硬岩 No. q, [™]MN/m² 4 6 7 9 28.8 1.6 0.2 1.5 90.4 27.8 E_{tan} 1 $E_{\tan \ '}$ 0.5 0 0.5 $q/q_{\rm f}$ -1 (b) 各試料のSRR ○:軟岩 ●:硬岩 (): $q_u(MN/m^2)$ O(0.4) 12 0.5 (0.2) $\overset{(44.7)}{\bullet}_{(28.8)}\overset{(90.4)}{\bullet}\overset{(27.8)}{\bullet}\overset{(59.7)}{\bullet}$ (19.5) (1.6) Δ No.1 3 3 11 4 6 7 9 12

図-4(a)と(b)は、図-3の検討で乱れが大きいと判断され たコア試料を除いて整理した $q_{\rm u}$ と $V_{\rm p}$, 割線ヤング率($E_{\rm s,50}$) と Vnの関係である. 図中の実線は全プロットに対する回帰 曲線であり、rは相関係数である. 各図には大久保&寺崎5) が RB などによる多くのコア試料から得た結果をハッチで 示している他, 図-4(a)には同文献による近似式による曲線 を破線で示している.大久保&寺崎⁵は,岩石の $g_u \ge E_{s,50}$ は V_nに対して指数的に大きくなることを示している. PS-WL で得たコア試料による各プロットは、何れも大久保 &寺崎⁵が示した範囲となる.また、qu~Vp関係の回帰曲線 も大久保&寺崎⁵が得た近似式に近く、PS-WL で採取したコ ア試料による各関係は、RB で得たコア試料と同等である. 5. Р値と強度・変形特性の関係

図-5~7 に図-4 と同様に選定して整理した PS-WL のコア 試料の V_p, q_w, E_{s,50} と P 値の関係を示す. なお, P 値は PS-WL の先端ビット(PS89)を利用した値として整理している.火砕 岩は、岩種としては泥岩・砂岩・頁岩と同様に堆積岩に分

類されるが、各関係図共に火成岩に近い領域にプロットされることから、「泥岩・砂岩・頁 岩」と「火砕岩・火成岩」のグループに分けて整理している.また、回帰曲線も同様に分 けて検討している. 各特性値と P 値の関係は、岩種は少ないものの、各図中の回帰式に示 すように指数的な関係にあり、相関係数(r)は全て 0.8 以上が得られ、相関性が高い結果が得 られる. 図-5~7の結果は、連続打撃動的貫入試験を併用した PS-WL において、岩石の各 特性の概略値を P 値から推定する手段として利用できる. ただし、より多くのデータを蓄 積して整理し、多種の岩種についても検討して行くことが重要である.

図-3. PS-WL 試料の Etan/Etani~q/q 関係と SRR

100000

(b) E_{s.50}とV_pの関係

6.おわりに

PS-WL で採取した岩石のコア試料の品質を谷ら⁴の方法を利用して定量的に評価した. その結果, quが小さい軟岩は打撃掘 削の影響で乱れている可能性が大きいことが分かった. 乱れが少ないと判断された PS-WL によるコア試料の強度・変形特性 と V₀の関係は、ロータリーボーリングによるコア試料と同等であった.また、それら試料の強度・変形特性と P 値の関係は相 関性が良く、P値を利用した各特性の概略値の推定に利用できる.

[〈]参考文献〉1)生森・今村:地質調査とボーリング技術の最新事情,土木施工, Vol.46, No.10, pp.93-98, 2005. 2)中野ら: RPD による連続打撃動的貫入試験 の水平ボーリングへの適用,第45回地盤工学研究発表会講演集(CD-R),2010.3) 今村ら:連続打撃動的貫入試験による山岳トンネル切羽前方探査事例 報告, 第51回地盤工学研究発表会講演集(CD-R),2016.4)谷ら:ボーリング技術の高度化に関する研究ー均質な堆積軟岩におけるサンプリングによる試 料の乱れの評価一,電力中央研究報告, No. U97066, 1998.5)大久保・寺崎:岩の物理的性質と弾性波速度,土と基礎, Vol.19, No.7, pp.31-37, 1971.