3次元有効応力解析による平成26年広島豪雨災害を対象としたすべり安定性評価

(株) 構造計画研究所

1. はじめに

斜面の安定性が消失して発生する災害は、 地震時 や人為的な構造物の施工過程などの様々な要因によ って生じるが、その多くは降雨時に見られる.降雨 時には, 土中の水分量の増加による粘着力の低下や, 間隙水圧の発生による有効応力の低下が生じ、斜面 の安定性が失われる、平成26年8月豪雨においては 広島市安佐北区・安佐南区で地山の表層崩壊により 多くの土石流が発生し、死者75名に及ぶ大きな災害 がもたらされた.

本研究では、このような災害の予測手法として、 有限要素法による3次元有効応力解析と斜面のすべ り安全率計算手法を適用し,平成26年広島豪雨災害 を対象とした降雨時の地山の安定性評価を行った.

2. 安定性評価手法

降雨時の地山を対象とした有限要素解析は2段階 に分けて行う.地形を考慮した地圧の評価には十分 に広域な領域を考慮する必要があり,一方で降雨に よる表層崩壊の検討には地表付近の詳細なモデル化 が必要である.本研究では、背後の山頂を含む地山 全体の全応力解析を実施し,その後に表層付近に着 目した有効応力解析を行った.表層地盤の初期応力 は全応力解析結果から補間して設定した.

最後に有効応力解析結果より, 地表付近の地盤の 有効応力と飽和度を参照し,表層土の局所的な安全 率を計算した.

3. 広域を対象とした全応力解析

前述のとおり,地山の表層崩壊を検討する上で初 期地圧の設定は重要であり,本研究では阿武山の山 頂を含む広域のモデル化を行った. 国土地理院の基 盤地図情報より、5mメッシュを平面直角座標系に変

正会員	○渡辺	高志	正会員	三橋	祐太
正会員	岡村	航	正会員	島袋	ホルヘ

換し,標高値を補間計算することにより,地形を詳 細にモデル化した FEM メッシュを作成した. モデル 化領域は平成26年8月20日早朝に県営緑丘住宅背 後で発生した土石流の流下地点を原点とし、東西に それぞれ 0.6km, 南に 0.5km, 北に 1.5km, 標高 -100m以上を対象とした.

各境界面はローラー支持とし、モデル全体を表 1 に示す物性値で地山の全応力解析を行った.図1に 解析結果より主応力の分布図を示す.

表 1 全応力解析における地盤物性値

単位重量	弹性係数	ポアソン比
20.0 kN/m ³	60.0 GPa	0.30

4. 表層を対象とした有効応力解析

降雨を考慮した有効応力解析では、緑丘住宅の背 後斜面の表層地盤を対象に、東西 640m,南北 1280m に領域を狭め、地表から G.L.-10m までの FEM メッ シュを作成し、全応力解析結果から初期応力の補間 を行った. 文献より, 地盤を G.L.-2m を境に岩盤部 と表土に分け、表 2に示す地盤物性を設定した.不 飽和特性は VG モデルによって設定した。特に重要 となる表土(まさ土)の水分特性曲線を図 2 に示す.

キーワード 斜面安定性,有効応力解析,3次元有限要素法 連絡先 〒164-0011 東京都中野区中央 4-5-3 (株) 構造計画研究所 防災・環境部 TEL03-5342-1137

-382

単位重量	岩盤	表土			
弹性係数	60.0 GPa	60.0 MPa			
ポアソン比	0.30	0.30			
初期間隙率	0.0082	0.5300			
飽和透水係数	$1.25\! imes\!10^{-8}\mathrm{m/s}$	$2.70 imes10^{-6}$ m/s			
VG モデル α	0.01 m^{-1}	7.00 m ⁻¹			
VGモデル n	2.26	1.82			

表 2 有効応力解析における地盤物性値

図 2 表土に設定した不飽和特性

境界条件は各境界面の変形を拘束し,水理境界と しては不透水条件とし,地表面は滲出面境界を設定 してこれらの節点に降雨強度に基づく流量を与えた. 降雨強度は気象庁のアメダスより三入の気象データ を使用し,8月19日の17時から24時間の1時間値 から設定した.初期条件は,表土の自然含水比から 初期サクションを設定し,降雨の設定前にモデル化 領域内で十分に拡散させてから決定した.図3に解 析結果より,雨量が最大となる時刻断面の解析結果 を示す.なお,全応力と非定常有効応力の解析は NASKA3D (構造計画研究所)を用いて行った.

5. 地山表層の3次元すべり安全率評価

有効応力解析結果より,有効応力と飽和度を参照 して3次元斜面のすべり安全率評価をPOST-S/3D(構 造計画研究所)により行った.地盤強度は平成26年 広島豪雨災害合同緊急調査団による調査報告書より, 飽和度 82.0%の粘着力を 22.0kPaとし,飽和時に 0kPa となるように線形で設定し,内部摩擦角は 40.8 度と した.図4に雨量が最大となる時刻における,地表 面から深さ 1.5m 位置における局所安全率(抵抗力/ 滑動力)の分布を示す.なお,左図は調査報告書よ り土石流の流況図である.右に示す有効応力解析結 果に基づく局所安全率分布は土石流の発生個所をよ く捉えており,例えば黒丸で示した調査による露岩 位置近傍で,局所安全率は特に小さくなっている.

図 4 G.L.-1.5m における局所安全率分布

6. まとめ

本研究では、平成26年広島豪雨災害地区の実地形 を考慮した広域の全応力解析を行い、得られた応力 を表層詳細モデルに引き継ぎ、有効応力解析を行っ た.得られた応力を用いて、地形の3次元性を考慮 したすべり安全率を計算した.

得られた地山表層の局所安全率分布は,調査によ り得られている流況図と整合的であり,適用した手 法の妥当性が示された.

参考文献

平成26年広島豪雨災害合同緊急調査団調査報告書,2014. 西垣誠,竹下祐二,河野伊一郎:室内試験による不飽和特性の非定常算定方法,土木学会論文集,No.454/Ⅲ-20, pp.103-112,1992.