凍土の変形係数推定に用いる真ひずみ率の乾燥密度依存性

(株)	精研	技術開発部	正会員	〇大石	雅人
(株)	精研	技術開発部	正会員	上田	保司

1. はじめに 地盤凍結工法において,凍土内部および隣接構造物の応力分布計算などに用いられる凍土の変形 係数は、一般に、室内一軸圧縮試験から求められる、試験供試体の上下端部には乱れた領域
¹⁾が存在するため、変

形係数の測定には,健全領域にひずみゲージを貼付 する方法^{1)や} LDT²⁾の使用が推奨されているが,既 報では、供試体全体の軸ひずみと健全領域のひずみ の比率から乱れの影響を評価する簡易推定法を提 案した³⁾.この推定法は、手間が少なく、今後の工 学的な展開も考えられる.

本報では, 簡易推定法の適用範囲の拡大および影 響因子依存性把握を目的として,乾燥密度を調整した試料土で実験を行った. また、本推定法の現場への適用を見据え、不撹乱状態の土丹も試料土とした. 2. 実験方法および簡易推定法 凍土の一軸圧縮実験装置を図1に示す. 試料 土は,乾燥密度を調整した豊浦砂と藤の森粘土,関東地方で採取した不撹乱状 態の土丹である.物理定数等を表1に示す.実験は,文献^{1),3)}と同様の手順で, 温度を-10℃,ひずみ速度を1%/minに設定し、供試体高さHを変えて行った. 供試体全体の軸変位を変位計,局所ひずみをひずみゲージで測定した.

図1のように、 凍土供試体を健全領域と乱れた領域の2つの部材からなる弾 性体と仮定すると、50%応力点までの供試体全体の軸変位を表す圧縮変位量 h_{50.a}は、式(1)で示すように供試体高さHの一次関数として表現できる³⁾.

 $h_{50,a}$ (H) = $\epsilon_{50,t}$ · H + ($\epsilon_{50,d}$ - $\epsilon_{50,t}$) · H_d (1)ここで、 ε₅₀₁ は健全領域のひずみ、 ε_{50d} は乱れた領域のひずみ、 H_d は乱れた領 域の厚みである.式(1)の傾きである $\epsilon_{50,t}$ と、 $h_{50,a}$ をHで除した供試体全体の軸 ひずみɛ50.aとの比率を表す式(2)で真ひずみ率 Rtを定義する.

> R_{t} (H) = $\epsilon_{50,t}$ / $\epsilon_{50,a}$ (2)

健全領域の変形係数 Eso.t は、式(3)に示すように、Rtと供試体全体の軸変位に $E_{50,t} = E_{50,a} / R_t$ よる変形係数 E_{50.a}から求まる. (3)

3. 実験結果 図2に乾燥密度pdと最大応力σmaxとの関係を示す.豊浦砂と藤 の森粘土は、pdの増加にともなって、それぞれomaxが増加する傾向を示す. ρd=1.5g/cm³付近で土質によるσmaxの違いを比較すると、粘性土よりも砂質土の 方が大きく、土丹のσ_{max}は藤の森粘土よりも2倍ほど大きい.

図3に乾燥密度pdと変形係数 Esoとの関係を示す.豊浦砂および藤の森粘土 ともに、 pd の増加に対して Eso が減少する. 同じpd の 3 つの土質を比較する と、砂質土が最も大きく、土丹の Eso は藤の森粘土の約2倍である. セメンテ ーション構造を持つ凍土は、構造を持たないものと比べて、最大強度が大きく なる 4だけではなく変形係数も大きくなることが分かった.

荷重 載荷板 変位計 健全領域 端部の 乱れた領域 供試体高さ H の厚み H_d ひずみゲージ ・軸圧縮実験の模式図 図1 20 (MN/m^2) 豊浦砂 -10°C ◎ 藤の森粘土 15 土丹 10 ط R 5 授 К 最 0 1.0 1.2 1.4 1.6 18 0.8 乾燥密度 p_d (g / cm³) 図2 乾燥密度と最大応力との関係 ×10 (m^2) ◇ 豊浦砂 -10℃ (MM) ○ 藤の森粘土 8 ▲ 土丹 E_{50} 6 教 厥 4 域の変形 2 阌 0 άH 0.8 1.0 1.2 1.4 1.6 18 闄 乾燥密度 pd (g/cm3) 図3 乾燥密度と変形係数との関係

キーワード 変形係数、凍結工法、上下端部の乱れ、乾燥密度、ひずみゲージ、真ひずみ率 〒561-0894 大阪府豊中市勝部 1-2-18 TEL.(06)6858-0865 FAX.(06)6858-0903

表1 試料土の物理定数および平均粒径							
- 1244€	乾燥密度	乾燥密度	含水比	平均粒径			
武府子上	調整方法	(g/cm^3)	(%)	$\times 10^{-3}$ (mm)			
曲清动	粗に水中充填*	$1.49 \sim 1.55$	$24.4 \sim 25.6$	105			
豆佣吵	密に水中充填*	$1.62 \sim 1.67$	$21.3 \sim 22.9$	195			
	スラリー	$1.01 \sim 1.05$	$50.7 \sim 55.8$				
藤の森粘土	0.1MN/m ² 圧密	$1.32 \sim 1.34$	$31.6 \sim 35.9$	22.3			
	1.0MN/m ² 圧密	$1.46\sim1.48$	$28.3 \sim 29.6$				
十丹	不撹乱	$1.47 \sim 1.50$	$26.5 \sim 27.8$	60.2			

※水中充填の際,打撃回数を変え締固め具合を調整¹⁾

載荷初期における凍土の弾性的な変形は、氷および土粒子自身の変形、氷と土粒子の接着部の滑りによると考 えられる. 土粒子の母材となる岩石および氷のヤング率は, 氷の結晶構造や岩石の種類によっても異なるが, 凍土 の変形係数より大きい^{5,6}. そのため、氷と土粒子の接着部の滑りが凍土の変形に最も寄与すると考えられる. そ こで、図4に土粒子の見かけの比表面積 Sreと変形係数 Esoとの関係を示す.ここで、見かけの比表面積とは、粒 径加積曲線から平均粒径を決定し、土粒子が球型をしていると仮定した場合の単位重量当たりの比表面積である.

図中では、土質に関わらず、Sreの減少にともなって E50 がほぼ直線的に減少す る. つまり, 乾燥密度が増加することで, 比表面積が増加し, 接着部分におけ る滑りが相対的に多く生じたと考えられる.なお,土粒子表面に存在する不凍 水が凍土の変形におよぼす影響については、今後の課題のひとつにしたい.

図5は供試体高さ H と圧縮変位量 h_{50.a}との関係で、それぞれの近似直線を 破線で示す.いずれの条件でも、Hの増加にともなって hso,a が直線的に増加す る. 直線の傾きは、pdの増加に伴って大きくなる傾向で、特に砂質土で顕著で ある. 切片も,ραが大きくなると増加する傾向を示す. この直線から,式(1)の ε50,tを決定し、真ひずみ率 Rtを求めた. さらに、式(3)から健全領域の変形係数

を求め、ひずみゲージの結果との比較から、既報 3) と同様に,推定法の妥当性を確認した.

図6に供試体高さ H と真ひずみ率 R_t との関係を 示す.粘性土および砂質土ともに、 ρ_d の増加に対し て, Rt が減少する傾向を示す. ここで, H=100mm を 例にとり, 図7に乾燥密度pdと真ひずみ率 Rt との関 係を示す. ρ_d =1.5g/cm³ 付近で, 土質によらずに R_t が近い値を示すことから、R_tをρ_dで一意的に整理で きる可能性がある.また、同程度のpdでは土丹と藤 の森粘土の Rtがほとんど変わらないことから, セメ ンテーション構造の有無が真ひずみ率に及ぼす影 響は小さいことが示唆された.

既報 3)では、変形係数が小さいほど真ひずみ率が 大きく,乱れの影響が小さくなる傾向を示したが, 今回の実験範囲では、こうした傾向は見られなかっ た. 今後は、上記の課題とともに、工学的な利用の ために, 不撹乱土に関する実験と検討を試みたい.

4. まとめ 本報では, 凍土の一軸圧縮実験におい て,健全領域の変形係数を簡易的に求めるために導

- ・乾燥密度の増加に伴い、凍土の最大応力は増加し、変形係数は減少した。
- ・真ひずみ率は、乾燥密度の増加に伴い減少する傾向を示し、 同程度の乾燥密度では土質による差があまりない.
- ・セメンテーション構造によって、真ひずみ率はあまり変わらなかった. 文献 1)上田他(2007):土木,Vol.63,No.2,pp.577-589. 2)龍岡他(1989):土と 基礎,Vol.37,No.12,pp.33-37. 3)大石他(2015):土木学術講演概要集Ⅲ-280

