海水曝露環境に置かれた強度の異なる固化処理土の劣化特性

1. はじめに

浚渫土を原料土として作製した固化処理土を破砕し,この破砕粒 子を砂礫の代替品として護岸背面の裏埋などに利用することがで きれば好都合である.しかしながら,固化処理土を海水中で長期間 曝露すると,海水に触れている表面から Ca²⁺が溶出し,強度の低い 劣化層が形成されることが知られている^{1),2)}.破砕粒子にこうした 劣化が生じると,内部摩擦角が大きく低下する可能性がある.一方, 固化材添加量を多くすると,劣化量を低減できる可能性が高い.そ こで,本文では固化処理土の劣化特性を把握する目的で,固化材添 加量を変えた固化処理土を海水曝露環境に放置し,その劣化特性を 調査した.

2. 海水曝露環境

表-1に,一般的な海水のイオン種類とその濃度を示し,合わせて 実験で用いた人工海水のイオン濃度を示す.本実験では海水とほぼ 同じ成分を持つ人工海水を使用した.

3. 固化処理土の劣化試験

固化処理土の配合と強度を表-2に示す.

(1) 試験方法

固化処理土の劣化特性は針貫入試験で求めた. 試験条件を表-3 に 示す.実験では処理土がフレッシュ状態(1日養生後に曝露)から 劣化する場合と,固化後(28日養生後に曝露)から劣化する場合を 比較した. 試験方法は,先端が平坦な直径4 mmの円柱丸棒を2 mm/minの速度で供試体に貫入するものであり,貫入量と貫入力の 関係を求めた. 針貫入試験用の供試体は幅15cm×奥行き15cm×高 さ5cmの大きさである.海水曝露は約20ℓの人工海水を入れた容

器内に固化材添加量の異なる供試体をそれぞれ1個(合計4個)水浸させた.人工海水は水中ポンプを用いて容器内を循環させたが,実験中取り替えなかった.

(2) 試験結果

曝露期間の違いによる試験結果例を図-1 に示す. 針貫入試験は曝露のな い気中養生供試体でも実施した.

図-1によると、曝露なし(以下、健全部と言う)の試験結果(赤線)の 貫入力Pは、貫入量 δ がゼロから大きく増加しているのに対して、曝露供 試体のPは δ とともに漸増する傾向がある。高強度の処理土の劣化領域は ゼロから健全部までの間に、強度の漸増域が存在すると考える方が自然で ある.曝露供試体の劣化量は健全部の $\delta \sim P$ 関係(すなわち、赤線)を貫 入量軸に沿って平行移動させ、両者の $\delta \sim P$ 関係がほぼ一致する所のP=0の δ を劣化量Dと定義した。この結果、劣化域内には、強度の漸増域が存 在することになる。図-1によると、Dは曝露期間とともに増加することが わかる。

固化材添加量 C と劣化量 D の関係を図-2 に示す. D は固化後曝露より もフレッシュ曝露の方が大きく、かつ Cが増加するほど減少することがわ かる. なお、 $C = 400 \text{ kg/m}^3$ の固化後データにおいてDが大きいが、この理 由は供試体が膨張したためである(150 日曝露で 3.13mm 膨張、膨張表面 から針貫入試験を実施).海水中に SO_4^2 があると、固化材に含まれてい

五洋建設㈱ 正 新舎 博 正 堤 彩人 五洋建設㈱ 正 〇柳橋寛一

表-1 人工海水の成分表

八街	海水		人工海水	
成万	質量%	mg/L	mg/L	
ナトリウムイオン	Na ⁺	1.0556	10873	12000
マグネシウムイオン	Mg ²⁺	0.1272	1310	1300
カルシウムイオン	Ca ²⁺	0.0400	412	470
カリウムイオン	K ⁺	0.0380	391	282
ストロンチウムイオン	Sr ²⁺	0.0008	8	0
塩化物イオン	Cľ	1.8980	19549	22000
硫酸イオン	SO42-	0.2649	2728	2600
臭化物イオン	Br	0.0065	67	0
炭酸水素イオン	HCO3	0.0140	144	0
フッ化物イオン	F	0.0001	1	0
ホウ酸	H ₃ BO ₃	0.0026	27	0
	35511	38652		

表-2 配合と強度

Case	粘土		固化材 スラリー		合計	一軸圧縮強さ <i>q</i> ^{u28}
	土粒子	水	固化材	水		(MN/m^2)
Case-100	722	729	100	70	1621	1.205
	271	729	33	70	1103	
Case-200	722	729	200	140	1791	3.540
	271	729	66	140	1205	
Case-300	722	729	300	210	1961	5 953
	271	729	99	210	1308	5.855
Case-400	722	729	400	280	2131	7.400
	271	729	132	280	1411	7.400

粘土と固化材スラリーの上段は質量(kg), 下段は体積(L)

表-3 針貫入の試験条件

Case	試験前養生条件	固化材添加量 C kg/m ³	試験時期	
100F	フレッシュ: 1日気中養生	100	海水曝露	
200F		200	34日,	
300F		300	55日, 87日,	
400F		400	177日	
100	固化: 28日気中養生	100	海水曝露 7日,	
200		200		
300		300	28日, 60日,	
400		400	150日	

キーワード:固化処理土,海水曝露,劣化特性 連絡先:〒320-2746栃木県那須塩原市四区町1534-1 五洋建設㈱技術研究所 TEL0287-39-2116 る Ca²⁺と反応して二水石膏が形成され,更に C₃A と反応してエトリ ンガイトが生成される.この時膨張し,高濃度の場合は急激な膨張 を示すが,ある濃度よりも低い場合にはほとんど膨張が見られない ことが指摘されている³⁾.

劣化量 D に関しては,式(1)が既に提案されている.ここに,A は 劣化係数,t は暴露した経過年数である.

 $D = A \times t^{0.5} \tag{1}$

そこで、 $t^{0.5}$ を採用して、本試験結果から $t^{0.5}$ とDの関係を求めた.その結果を図-3と図-4に示す.これらの図によると、Dは式(2)で求めることができる.式(2)は本試験結果の $D \sim t^{0.5}$ 関係が原点を通らないことから、式(1)に切片を設けたものである.Bをゼロにして式(1)を用いると、Aは35~45%ほど小さくなり、実験結果との整合性が悪くなる.

$$D = A \times (t^{0.5} - B) \tag{2}$$

ここに、AとBは材料定数である.

長期曝露後の劣化量に関しては、曝露開始時の供試体の状態で Dを議論するよりも、むしろ標準強度(通常、 q_{u28})で論ずる方がより 一般的であると考えられる.本処理土に関しては、 q_{u28} (単位は MN/m^2) とCの間に式(3)の関係が得られている.

$$q_{\rm u28} = 0.0209 \ C - 0.725 \tag{3}$$

そこで、式(3)を用いて、 $q_{u28} \ge A$ および *B* の関係を求めると、図-5 と図-6が得られる.図-5 には原ら²⁾および山路ら⁴⁾の実験結果を合 わせて示した.原らは*C* = 50、70、100 kg/m³の処理土を用いて、海 水交換のない場合の約1 年経過時の劣化量を針貫入試験で求めてい る.山路らはコンクリートの劣化量を求めており、 q_{u28} が 33.7~47.2 MN/m²における *A* は 0.52~0.85 である.図-5 によると、 $q_{u28} \ge A$ の 間には式(4)の関係がある.ただし、材料構成の異なるコンクリート は除外した.本実験結果と既往の実験結果の*A*を比較すると、約0.2 ~0.5 MN/m²の管中処理土と SGM 処理土では一致しなかったが、約 2~6 MN/m²の CDM 処理土ではほぼ一致した.管中処理土と SGM 処 理土において*A*が一致しなかった要因として、原料土(=海成粘土)、 針貫入試験方法、曝露条件、式(1)と式(3)の適用の違いなどが考えら れる.また図-6 より、Case-400Fの結果を除くと、*B*=0.0856 (B^2 = 2.7 日)が得られた.

4. まとめ

以上の試験結果を用いると、固化材添加量 C が 200 kg/m³ (q_{u28} = 3.540 MN/m²) の場合, A は 8.20, B は 0.0856 となり、50 年間曝露 すると 57 mm 劣化する計算になる.砂礫として利用する破砕粒子の サイズが小さいとすべてが劣化層になり、砂礫の代替品としての適 用は困難になると思われる.上記の解決策としては破砕粒子のサイ ズを大きくする方法と、C を増加する方法 (C=300 kg/m³の劣化層は 36mm) が考えられる.劣化層の中には強度の漸増している部分が含 まれているので、劣化しても高い内部摩擦角が維持できる可能性が あり、今後、劣化と内部摩擦角に関する実験が必要と考えられる.

 $A = -6.038 \times \ln(q_{u28}) + 15.834$

参考文献

 1) 渡部ら:海水曝露環境に放置・養生した SGM 軽量土の長期材料特性,第59回地盤 工学シンポジウム,pp.675-680,2014.2) 原ら:海水に曝露したセメント処理土の劣化 機構に関する基礎的研究,土木学会論文集C(地圏工学),Vol.69,No.4,pp.469-479, 2013.3) コンクリート診断技術'10 基礎編,(社)日本コンクリート工学協会,pp.55-56, 2010.4) 山路ら:長期間海水中に浸漬されたコンクリートの劣化状況および簡易な劣化 指数に関する検討,港湾空港技術研究所資料,No.1150,2007.

図-6 qu28 と B の関係

(4)