消波ブロックによる防波堤背面補強体の滑動抵抗力の検討

中部地方整備局	名古屋港湾空港技術調	查事務所	小椋	進
中部地方整備局	名古屋港湾空港技術調	查事務所	鬼頭	孝明
中部地方整備局	名古屋港湾空港技術調	查事務所	富田	健
	株式会社エコー	正会員	〇長谷川	巖

1. 目的

混成式防波堤の港内側に,割石や方塊を設置するこ とで直立部を補強できることが知られており,その補 強効果の算定法が技術基準¹¹に示されている.しかし, 背面補強体に消波ブロックを適用する場合の補強効果 については示されていない.転用ブロックを活用して, 混成式防波堤直立部の港内側を補強する場合や,港内 静穏度の向上を目的として防波堤港内側に設置する消 波ブロックに,直立部の補強効果を期待するケースも ある.そのため,混成式防波堤の港内側に設置する消 波ブロックの補強効果を,二次元水理模型実験で検討 した.

2. 既往の研究

菊池ら²は,防波堤の背面に裏込め石を設置する断面 について,ジャッキにより水平荷重を作用させて滑動 抵抗を検討している.赤塚ら³は,防波堤の背面に割石 と方塊を設置する断面について,ジャッキにより水平 荷重を作用させる方法と、造波水路における滑動実験 により、滑動抵抗を検討している.しかし,両者とも 消波ブロックの検討は行っていない.

三井ら⁴は,防波堤の背面に消波ブロックを設置する 断面について,ウインチにより水平荷重を作用させる 方法で,消波ブロックの滑動抵抗を検討し,抵抗力を 背面補強体の重量で除した摩擦係数として,滑り出し で 0.6 程度,滑り出した後の最大値で 1.2 程度の成果 を得ている。

3. 検討方法と検討ケース

二次元水路内に防波堤及び背面補強体の模型を設置

表-1 背面補強体の実験ケース

また 消波ブロック			背面補強体断面形状			
留丂	種類	質量(t)	高さ(m)	天端幅(m)	斜面勾配	
1	А	37	10.00	5.90	1:4/3	
2	А	37	7.25	12.45	1:4/3	
3	А	23	8.98	8.00	1:4/3	
4	В	21	12.80	4.95	1:4/3	

写真-1 実験断面設置状況(ケース 1)

表-2 波浪と潮位の条件

	ランク1	ランク 2	ランク 3	ランク4	ランク 5	
波高	7.7 m	8.9 m	10.1 m	11.3 m	12.5 m	
周期	16.3 s (設計波周期)					
潮位	H.H.W.L. (D.L.+2.3m)					

し,波浪を作用させて滑動限界波高を確認し,波浪荷重を算定して滑動抵抗力を評価した.実験模型設置例を 図-1に,実験ケースを表-1に,実験断面設置状況を写真-1に示す。実験を実施するにあたり,以下のような 工夫を行った.

1) マウンド石材層内にすべり面ができないように、マウンドの岸側端部に滑り止めを設置する.これにより すべり面を消波ブロック層とマウンド石材層の境界面とさせる.

キーワード 消波ブロック,背面補強,滑動,水理模型実験,衝撃砕波
連絡先 〒110-0014 東京都台東区北上野 2-6-4 株式会社エコー TEL 03-6365-0010

-469-

- 波浪荷重を算定しやすいようにケーソン形状を 矩形とし、波圧計でケーソンに作用する波圧を 測定して波浪荷重を測定する.
- 実験波浪を規則波とし、波浪荷重の算定精度を 高める.規則波の波高を5段階に徐々に大きく し、滑動限界波高を把握する.波浪と潮位の条件は表-2のとおりである.波高ランク1は設計 波のH_{1/3}で、波高ランク5はH_{max}である.
- 4) 背面補強体なしの実験を実施し、ケーソンのみの滑動抵抗を把握する.これを背面補強体ありの滑動限界荷重から差し引いて、背面補強体のみの滑動限界荷重を評価する.
- 4. 背面補強体の滑動抵抗検討結果

波圧波形を図-2 に示す.生波形には衝撃砕波圧が 見られる.この衝撃力で波力を算定すると滑動実験 結果と一致しないので,low pass filter をかけて図 中のLPFのように衝撃力を緩和して波力を評価した.

図-3に1波毎の波高と波圧の解析結果を示す.波 高が大きいほど波圧が大きい傾向が見られる.P1が 直立部最上点,P6が底面後趾側であり,波圧の大き さもこの順序になっている.P1~P4の合成波形から 水平波力を,P5とP6の合成波形から鉛直波力を算出 した.

表-3に波高ランク5段階の波作用による滑動量, 算定した波力,滑動限界波力と背面補強体の摩擦係 数算定結果を示す.滑動限界波力は2種類の算定を 行った.一つは「動き出し直前」で,表-3の場合は 波高ランク4で滑動を生じているので波高ランク3 の値とする.もう一つは「滑動量0.3m」で,内挿補 間により滑動量0.3mに相当する波力を採用した.

背面補強体の各ケースの摩擦係数を解析した結果 を表-4に示す.動き出し直前は三井らの「滑り出し」

図-2 波圧波形 (ケース 1, 波高ランク 5, 上から 2番目の波圧計)

図-3 1波毎の波高と波圧強度の解析結果

	滑動	量 (m)	波力(kN/m)			
	ガラス側	中央	水平	鉛直			
波高ランク1	0.00	0.00	741	424			
波高ランク2	0.00	0.00	839	464			
波高ランク3	0.00	0.00	1108	565	ケーソン	補強体	背面
波高ランク4	0.40	0.25	1489	715	抵抗力	抵抗力	補強体
波高ランク5	2.70	2.25	2588	1000	(kN/m)	(kN/m)	摩擦係数
動き出し	ガラ	ス側	1108	565	557	551	0.75
直前	中	央	1108	565	557	551	0.75
滑動量	ガラ	ス側	1394	678	515	879	1.20
0.3m	中	央	1516	722	499	1017	1.39

表−3 ケーソン滑動量と摩擦係数算定例(ケース 1)

表-4 背面補強体の摩擦係数

	ケース1	ケース 2	ケース 3	ケース4
動き出し直前	0.74	0.75	0.7	0.61
滑動量0.3m	1.26	1.45	1.41	1.34

に, 滑動量 0.3m は三井らの「滑り出し後の最大値」に相当すると考えられ, 三井らの結果と同じか若干大き い摩擦係数となった.

参考文献

- 1) 港湾の施設の技術上の基準・同解説、社団法人日本港湾協会、平成19年7月
- 2) 菊池喜昭,新舎博,江口信也:ケーソンの安定性に及ぼす裏込めの効果,港湾技術研究所報告,第 37 巻第2号,1998.
- 3) 赤塚雄三,竹田英章,蓮見隆:混成堤の堤体背後に設置したコンクリート方塊あるいは割石の滑動抵抗, 第 22 回海岸工学講演会論文集, pp. 421-425, 1975.
- 4) 三井順, 丸山草平, 松本朗, 半沢稔: 津波に対する防波堤背後の消波ブロックの滑動抵抗の検討, 土木 学会第 70 回年次学術講演会, Ⅱ-179, 2015.