第I部門

アースダム決壊に伴う決壊状況解析及び浸水マップ作成に関する研究

京都大学工学部	学生会員	\bigcirc	岩橋	卓也
京都大学大学院工研究科	正会員	Charatpangoon	Bhuc	ldarak
京都大学大学院地球環境学堂	正会員		清野	純史

1. 研究の背景と目的

日本は、世界の中でも特に地震活動が活発な地域 に位置しており、多くのダム被害が観測されている. そこで本研究では、東北地方太平洋沖地震により決 壊した藤沼ダムに注目する.ダム決壊時の対策をハ ード対策とソフト対策に分けて考えると、ハード対 策では膨大な費用及び時間がかかることに加え、想 定をこえる災害に備えることは難しい.そこで、ソ フト対策に重点をおき、自助の促進をおこなう.そ のためには事前に被害状況を把握することが必要と なる.よって、本研究では、同地震による藤沼ダム の決壊状況及び周辺の浸水状況を予測(把握)し、浸水 マップを作成、洪水状況を調査することを目的とす る.

2. 水理解析手法

河川における水理解析には ArcGIS10.2 と河川解析 ソフト HEC-RAS(Hydrologic Engineering Center-River Analysis System)を用いる.まず, Arc-GIS を用いて藤 沼ダム周辺の数値標高データから地理情報を取得す る.このデータを HEC-RAS にインポートし,流量等 の条件を入力して藤沼ダム下流周辺における浸水深 の変化をシミュレートする.

3. ダム決壊時の再現計算

3.1 ダム決壊時の再現計算

ダム決壊時の流量及びダム決壊部の断面状況の再 現計算を行う.ダム決壊部における流速が決壊部水 深の平方根に比例すると仮定すると,流量Q_b(m³/s) は定数α₁を用いて以下の式(1)で表される.

$$Q_b = \alpha_1 b(H - Z)^{\frac{3}{2}} \tag{1}$$

Hはダムの水位(m), Zは決壊部底部の高さ(m), bは 決壊部幅(m)を表す.また,決壊部の浸食速度が流速 に比例すると仮定すると,ダムの水位H及び決壊部底 部の高さZは定数a₂を用いて以下の式(2)及び式(3)で 表される.

$$Z = Z_{0} + \frac{\left(\frac{b}{\alpha_{2}\alpha_{1}A_{s}}\right)\left[(H-Z)^{\frac{1}{2}} - (H_{0}-Z_{0})^{\frac{1}{2}}\right] + ln\left[\frac{1 - \frac{b}{\alpha_{2}\alpha_{1}A_{s}}(H-Z)^{\frac{1}{2}}}{1 - \frac{b}{\alpha_{2}\alpha_{1}A_{s}}(H_{0}-Z_{0})^{\frac{1}{2}}}\right] \qquad (2)$$

$$H = \frac{1}{\left[\frac{\alpha_1 b dt}{A_s} + \frac{2}{(H_t)^{\frac{1}{2}}}\right]^2}$$
(3)

 H_0 及び Z_0 はダム決壊開始時のダムの水位(m),決壊部 の高さ(m), H_t はZを限りなく0に近づけた時のダム の水位を表し, H_0 =16.7(m), Z_0 =16.6(m)とする. なお,本研究ではSingh et al.¹⁾のダム決壊時の流量計 算結果をもとに試行錯誤的に α_1 及び α_2 を求め, α_1 =1.42, α_2 =1.1×10⁻³とする.また,ダム決壊部断 面を幅b=40(m)の長方形断面と考える.

3.2 再現計算の結果

流量 Q_b 及び総流量の再現計算の結果を図1に示す. ダムの水位H,決壊部高さZの再現計算の結果を図2 に示す.図1より決壊開始後の約26分で流量が最大 となり、このときのピーク流量 $Q_b \Rightarrow 2600 (m^3/s)$ とな ることが分かる.また、図2よりダム決壊開始後28 分にダム堤防が完全に決壊すること、ダム決壊開始 後25分から決壊部水位が急激に低下しはじめること が分かる.

4. 浸水マップを用いた洪水状況評価

4.1 浸水マップの作成

再現計算で得た結果をもとに、クリギング手法を 用いて浸水マップを1分間隔で作成する.このとき 使用したマニング値を表1に示す.作成した浸水マ ップを用いて、実際に被害が大きかった地域におけ る洪水状況を評価する.作成した浸水マップの最大 浸水域を図3に示す.

4.2 被害状況の評価

Google earth を用いて藤沼ダム決壊前後おける河 川周辺の物的被害状況の大小を目視で判別する.判 別の結果,建物の被害は図4に示すように,ダム堤 防から下流900(m)左岸周辺,2500(m)右岸周辺, 2900(m)両岸周辺の3地域に集中していることが確 認できた. それぞれを地域 A, 地域 B, 地域 C とする.

4.3 各地域における洪水状況の評価

ダム決壊後,浸水深が1(m)に達した時間を洪水流 の到達時間,各地域周辺で浸水域が最も大きくなっ た時間をピーク到達時間,浸水深1(m)以上の状態が 継続する時間を洪水の継続時間とする.作成した浸 水マップをもとに,地域A,地域B,地域Cにおけ るこれらの洪水状況を評価する.各地域における洪 水状況を表2に示す.

4.4 考察

ピーク到達時間は、それぞれ洪水到達時間から 8 分後、5 分後、9 分後と目視で認知してからの完全な 避難は難しいといえる.被害が大きい地域は、いず れも河川の屈折部及び蛇行部に位置していた.一方、 河川の直線区間に位置する建物は比較的に被害の小 さいことが確認できた.これは、屈折部及び蛇行部 では、流水が滞り、洪水が疎通しにくいため、洪水 の流出量が大きくなることが原因だと考えられる. また、山間部ではわずかな地域を残してほとんどの 地域が浸水しており、避難場所が限られてくるので 事前にダム決壊時の対応を考えておくことが重要で

あると言える.

表1 水理解析に用いるマニング値

水路	各区分	マニング値
都市部	高密度居住区中密度居住区	0.08 0.06
時 自然河川	低密度居住区 小流路,雑草なし 小流路,雑草,灌木 小流路,雑草多,磯河床 山地流路,砂利,玉石	0.04 0.033 0.040 0.050 0.050 0.050

表 2 地域別洪水状況評価

	地域 A	地域 B	地域 C
洪水到達時間 (分)	20	29	26
ピーク到達時間 (分)	28	34	35
洪水継続時間 (分)	22	15	24

5. 結論

本研究では,藤沼ダム決壊における洪水状況の再 現計算を行い,非定常流浸水マップを作成し,被害 が大きかった地域の洪水状況を評価した.被害の大 きい地域は河川の屈折部及び蛇行部に集中する傾向 にあることが確認できた.また,山間部の地域では 浸水深が大きくなることが確認できた.これらの地 域では,事前にダム決壊時の対応を考えておくこと が重要であるといえる.

図1 流量及び総流量の時間変化

図2 ダム水位及び決壊部高さの時間変化

図3 非定常流最大浸水域

図4藤沼ダム下流における被害状況

参考文献

 Singh V.P. and Scarlatos P.D. : Analysis of Gradual Earth - Dam Failure, Journal of Hydraulic Engineering, vol.114, pp.21-42, 1988.

Takuya IWAHASHI, Charatpangoon BHUDDARAK and Junji KIYONO iwahashi takuya.74m@st.kyoto-u.ac.jp