大井川下流域における網状流路の特徴と変動特性の把握

名城大学	正会員	溝口	敦子
名城大学	学生会員	○棚橋	巧治

1.はじめに

本研究で対象とする大井川では、写真のように多列砂州 が陸化し、網状流路が形成されている.この流路は、出水 により大きく変動し、時には河岸浸食災害を引き起こして いる.このように網状流路が形成されている河川では、変 動パターンを読み取るのが難しいため、河岸浸食災害の予 測も困難になっている.

そこで、本研究では、河道に形成されている流路の特徴 を調べ、変動特性を把握する方法について検討する.

図1 網状流路の変化状況 (河口から13~15km付近)

表1 神座地点の流況

平水

35.93

29.13

低水

12.52

13.28

渇水

2.05

5.97

最小

0.91

4.60

豊水

78.41

72.19

年最大流量

2229.15

2663.09

1996-1989

1990-2013

2.大井川下流域概要

本研究で対象とする大井川下流域は、出水時に多列砂州 が形成され変動し、平水時には、砂州が陸化し変動するような河川である.

ここで、大井川の流況を表に示す.上流ダム群の影響で 一時期極端に平水時の流量が減少していたが、年最大流量 が2400m³/s 程度、渇水流量が6.0m³/s 程度の河川となって いる.また、長島ダムが2001年に竣工されたため、図2 の年最大流量には変化がないものの、図3に示すように年 間を通じて出水回数が少なくなっていることがわかる.こ うした流況の変化を受け、最近では樹林化が徐々に始まっ ている.大井川の下流域の特徴を踏まえ、セグメント区分 を行うと、表2のようになり、1000m³/sの出水時にすべて の区間で複列砂州の形成領域に入る.

종료 6000	m ³ /s	2229		12												223						
5000		All		10000	21				١.				Ľ			2.0						
4000				100080					II		0000		L			10000		Ľ				
3000	١.			0000		ĥ			II		-	1		L	ı			l.			II.	
2000	-1		-	1000					H		÷	łł		÷	-	-	T	-	i			ŀ
1000	1		F				1	h	T			ii	h		H				tt			ŀ
0	196	0 10/	5	107	10	101	75 1	02/		10	85	10	00	100	35	200	61.U 0.1	200	15	201	0	

図2 神座地点の年最大流量の経年変化

表2 小セグメント区分

区間番号	1	2	3	4	5
区間(km)	-0.4~3.8	3.8~10.4	10.4~17.6	17.6~19.4	19.4~24.0
平均勾配	1/298	1/267	1/206	1/339	1/243
平均低水路幅(m)	850	650	780	440	410
平均粒径(mm)	26.42	23.46	26.2	24.52	29.42

3. 流路変動特性の把握について

(1) 横断測量データを用いた最深点発生位置の把握

大井川の河道特性を把握するため,最初に,横断測量地形データを用いることにした.大井川で形成されて いる多列砂州は,波長が非常に短いため,200m ピッチで取得されている横断測量で地形をすべて把握するこ とは難しい.そこで,横断測量データを用いて,まず,最深点の変動について調べることにした.その結果, 図3のようになり,多列砂州である河道でも,交互砂州のように最深点が左右に振れていることが確認できた. 交互にふれている個所は,河道線形が蛇行している部分で特に確認されたが,蛇行部を出て直線になっている 個所においても,巨視的にみれば左右にふれていることが確認できる.これは,多列砂州でも単列砂州のモー ドを含んでいることを示唆しており,既往の研究からも納得できる結果となっている¹⁾.

キーワード 多列砂州,網状流路連絡先 〒468-8502 愛知県名古屋市天白区塩釜口1-501 (学)名城大学理工学部 TEL052-832-1151

-072

(2) 航空写真を用いた流路位置の把握方法

これまで,網状流路の特徴や変動の特徴を詳細に調べる 手法はなかった. そこで, 取得可能な航空写真を用いて, 流路位置の詳細を把握することを目的に GIS を利用し以 下の処理を行うことにした.

図3に示すように,距離標を参考に河口から15~5km区 間を縦断方向に 20m ごとの 500 横断面を設け, さらに各横 断面を 80 分割し, 500×80 のポイントを設定する. あわせ て,航空写真から水域を把握し,縦断i,横断iポイントに おける l 年の水域情報 Wiilを設定し、水域ならば 1、それ 以外ならば0と入力する.この処理によって得たデータは, 流路線形を無視し,流路上の相対的な水路位置を表したも のとなり、図4のように500×80の配列情報となる.

この水域情報を用いて、自己相関性、相互相関性につい て以下の式で調べる.

$$R_{l,n}(20k) = \frac{\sum_{j=1}^{80} \sum_{i=1}^{250} \left(W_{i,j,l} * W_{i+k,j,n} \right)}{\sum_{j=1}^{80} \sum_{i=1}^{250} W_{i,j,n}}$$
(1)

ここに, *R*_{*ln*}(20*k*)は,式(1)で定義された*l* 年と*n* 年のデ ータの相関関数とする.

(3) 流路の特徴と変動特性の把握

a) 各年の流路特性

式(1)を用いて、図6に示した航空写真の自己相関性 について調べた.これをスペクトル解析したものが図7で ある.これをみると、年により強まる周期が若干異なるが 各年の流路は類似の周期性を持っていることが分かった.

b) 流路変動特性

流路がどのように変化するか,相互相関性を用いて検討 した.その結果を図1のような航空写真と照らし合わせる ことで,撮影年間で流路変動が顕著でない場合や変動が激 しくほとんど相関性がない場合などを説明することがで きた.

4.おわりに

本研究では、特徴が把握しにくい網状流路について、流 路情報を GIS 上で処理することにより, 把握することを試 みた. その結果, 流路が持つ周期性を見出すことができた. また, 流路の変動について, 航空写真取得年間の相関性を 調べることにより、何らかの把握ができることを示した. 今後は,網状流路の基本的特徴が出水等によりどのように決ま るかを調べていく予定である.

図3 最深点の変動状況

図4 細分格子と水域の様子

図5 水域相対位置の把握 (1 が入力されているセル背景を赤色としている)

航空写真情報と年最大流量 図 6 0.14 1995 2015 0.12 0.1 0.08 0.06 0.04 0.02 0 1000 2000 3000 4000 5000 **周**期(m)

図7 解析結果

参考文献 1) 渡邊康玄:モード干渉を考慮した砂州のモード減少過程,水工学論文集, No.50, pp. 967-972, 2006.

¥.#