河道の弯曲の影響を受ける堰上流の合流部の流れ・河床変動特性に関する研究

明石工業高等専門学校専攻科	学生会員	○久保	裕基
明石工業高等専門学校専攻科	学生会員	高田	翔也
明石工業高等専門学校	正会員	神田	佳一
法政大学都市環境デザイン工学科	フェロー会員	道奥	康治

はじめに 1.

近年、加古川では治水・利水を目的に建設された加古 川大堰の上流区間において,堰の湛水及び左支川美嚢川 の合流、上流の河道弯曲の影響により、合流部での右岸 砂州の肥大化など,河川管理上の諸課題が発生している. 本研究では、このような美嚢川合流部周辺の河川地形変 化特性とその要因を明らかにすることを目的としており, 既報では、上流河道の弯曲の影響を考慮した支川合流水 路を用いて, 堰湛水, 上流河道の弯曲の影響を受ける合 流部の流れ特性を明らかにしている 1). 本報では、本川 と支川の流量比が美嚢川合流部の河床変動特性に及ぼす 影響について、移動床実験および2次元河床変動モデル を用いた数値解析により考察した.

実験及び解析の概要 $\mathbf{2}$

加古川は,兵庫県を流れる流路延長 96km,流域面積 1.730km²の一級河川であり、河口から 15.8km 付近で 美嚢川が合流している(図-1).加古川大堰は河口から 12.0km の地点に位置し, 高さ 5.3m, 平常時における湛 水区間上流端は、美嚢川の合流部付近である¹⁾. 合流部 の本川幅は 200m, 支川幅は 140m であり, 支川美嚢川 には合流する直前に高さ2mの落差工が設置されている. 本実験では模型の縮尺を現地河道の1/250としてモデル 化した.実験水路は,図-2に示すように長さ 8m,幅 0.8m の本川に幅 0.48m の支川が X=2.83m の地点で本川に直 角に合流したものであり、水路勾配は現地河道に合わせ て 1/850 としている.支川の落差工として 0.108m の板 を合流前 0.45m の位置に設置した. また, 水路下流部 には高さの調節が可能な堰板を設置し, 大堰の操作によ る湛水効果を模擬した.移動床実験で河床材料は平均粒 径 1.3mm, 土粒子密度 1.47g/cm³の石炭紛を使用し, 水 路に 0.1m の厚さで敷きつめた状態を初期条件とした. 実験条件を表・1 に示す.上流端には弯曲の影響を模擬す るために左岸側に水路幅 1/4 の板を設置した.本実験は 本川と支川の流量比 λ (=Qt/Qm)をパラメータとし、通水 時間は予備実験において河床が定常状態となったと判 断をした 60 分とした.また,通水中のビデオ画像から LSPIV 法により表面流速の測定を行うとともに、抜水 後にレーザー変位計を用いて河床位の測定を行った.

美囊川

図-1 美嚢川合流部(2014 年)

図−2 実験水路 表-1 実験条件

番号	通水時間 T(hr)	本川流量 Qm(l/s)	支川流量 Q⊤(l/s)	下流端堰高 H _D (cm)	上流端条件
Run1	Run1 1.0 Run2	5.0	1.0	1.0	水路上流端の
Run2		5.0	2.5		を設置

また、今回は河川解析ソフトiRicを用いて実験同様の解析 を行った.基礎式は、以下に示す平面2次元の連続式と運動方 程式および流砂の連続式である.

$$\frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} + \frac{\partial (vh)}{\partial y} = 0 \tag{1}$$

$$\frac{\partial(uh)}{\partial t} + \frac{\partial(hu^2)}{\partial x} + \frac{\partial(huv)}{\partial y} = -hg \frac{\partial H}{\partial x} - \frac{\tau_x}{\rho} + D_x \tag{2}$$

$$\frac{\partial(vh)}{\partial t} + \frac{\partial(huv)}{\partial x} + \frac{\partial(hv^2)}{\partial y} = -hg \frac{\partial H}{\partial y} - \frac{\tau_y}{\rho} + D_y$$
(3)

$$\frac{\partial z}{\partial t} + \frac{1}{1 - \lambda} \left(\frac{\partial q_{bx}}{\partial x} + \frac{\partial q_{by}}{\partial y} + q_{su} + w_f c_b \right) = 0 \tag{4}$$

キーワード 支川合流,移動床,堰湛水,数値解析

〒674-0084 兵庫県明石市魚住町西岡 679-3 明石工業高等専門学校 TEL 078-946-6178

-125-

ここで, x, y: 平面直交座標, u, v: x, y方向の水深平 均流速(m/s), t: 時間(s), h: 水深, H: 水位, g: 重力 加速度(m/s²), ρ : 水の密度, τ_x, τ_y : x, y方向のせん断力 (kg/m/s²), D_x, D_y : 拡散項, z: 河床高, λ : 空隙率, q_{bx} , q_{by} : x, y方向の掃流砂量(m²/s), q_{su} : 河床からの土砂浮 上量(m/s), w_f : 土砂の沈降速度. 移流項の離散化には CIP 法, 乱流モデルは $k - \epsilon$ モデルが適用され, 掃流砂量 式として芦 田・道上式に長谷川による斜面勾配の補正 を考慮した式が用いられている. なお, 河床の材料は, 実験に用いたものと同じ, 密度 1.47g/cm³及び平均粒径 1.3mm とした. また, 実験水路と同様のスケールで, 横断方向 233 分割, 縦断方向 54 分割として格子を生成 し, 境界条件としては, 本川及び支川の上流端で流量を 与えた. 粗度係数は n=0.018 とし, 解析時間は 3600(s), として解析を行った.

3. 結果および考察

図-3に Run1, 2における抜水後の河床位コンター図 を示す.双方とも合流部付近水路中央に堆積が生じ、合 流部付近で洗掘,その下流側で堆積するといった傾向が 得られた.しかし、(b)では支川流量を増加させると合流 部付近の洗掘域及び範囲が増大しているのが確認でき る.これは、支川流入の影響が水路中央付近まで及んで いるものと考えられ、流れの剥離域が増加したものと考 えられる.またその影響により、合流後左岸側に生じる 死水域が増大し、それに伴い堆積域も水路中央付近まで 拡大していることが確認できる.また支川流入の影響に より局所的に生じた堰上げ背水の影響で水路中央での 堆積が 5.0mm 程度増加し、堆積域が x=2.7m 付近まで にとどまっているのが確認できる. 上流の弯曲の影響を 再現するために上流端左岸側に水路幅B/4の板を設置し たことにより,水路上流部左岸側に堆積が生じた.この傾 向は現地の堆積状況と類似しており, 概ね再現できてい る.図-4にはRun1、2における表面流況ベクトル図を 示す. 図-4の(a)と(b)を比較すると、(b)の場合は支川流 入に伴う流れの剥離による影響が v=0.2m 付近まで及び、 死水域が増大しているのが確認できる.また、合流部付 近の上流側においては局所的な堰上げ背水により、流速 が 8.0cm/s 程度小さくなっている.

図・5 には(a), (b)における数値解析の結果を示す.移 動床実験による結果と,同様上流部左岸から合流部右岸 側にかけて堆積が帯状に広がっているのが確認できる. また,合流部付近の洗掘やその下流側に生じている,堆 積域についても実験結果と類似している結果となった.

以上より数値解析の結果は,移動床実験の結果を 概ね再現できているものと考えられる.

4. まとめ

本研究では、合流部における加古川大堰の湛水効果 と支川美嚢川の合流、上流部の弯曲を実験水路上で再現 して移動床実験を行い、それらの影響が合流部の流れや 河床変動に及ぼす影響について考察し、数値解析が移動 床実験を再現できているかについて考察した。今後、本 実験や数値解析で得られた結果を踏まえ、水制工の設置 による移動床実験及び数値解析を行い、河川地形変化特 性の解明、効果的な河道管理法の検討を行う予定である.

【参考文献】

- 高田翔也,神田佳一:堰湛水の影響を受ける支川合流部 の流れ特性に関する研究、日本高専学会誌,pp29-34, 2015
- 2) iRIC 研究会: iRIC 講習会テキスト in KANSAI, 2013