# 大規模地下浄水池の地震時応答に及ぼす加振方向の影響

| 弘前大学 | 学生会員   | 〇三浦 千穂 |
|------|--------|--------|
| 弘前大学 | フェロー会員 | 有賀 義明  |

# 1. まえがき

水道施設は、生活・産業に必要不可欠なライフライン のひとつであり、大地震時の水道システムの安定的な機 能維持が重要となる.2011年東北地方太平洋沖地震で は水道施設に被害が生じ、長期間の断水が生じた.また、 水道施設の多くは高度成長時代に建設されているため、 高経年化した数多くの既設水道施設が更新時期を迎えて おり、水道施設の耐震性能の確認と耐震化が喫緊の課題 となっている.本研究では、信頼性の高い耐震性能照査 技術の確立と水道施設の地震対策技術の合理化を目的と して、三次元動的解析により大規模地下浄水池の地震時 応答の三次元性について検討した.

## 2. 三次元動的解析による検討

### 2.1 概要

改修計画が進められている水道施設を参考に地下浄水 池と地盤を連成させた解析モデルを作成し,加振方向を 2ケース設定し地震時応答の比較解析を行った.

## 2.2 三次元動的解析モデル

解析対象とした地下浄水池は、地表から土被り 0.5m の位置にあり、地下二階・地上一階建である.内部は中 柱と耐震壁により構成されている.地下浄水池と地盤の 連成モデルを図-1 に、地盤を非表示とした地下浄水池を 図-2 に示す.図-3 は地下浄水池内部の中柱と耐震壁の状 況である.基礎地盤については、二層の水平地盤とし、 長さ 193m、幅 111m、深さ 20mの範囲をモデル化した. 地盤および地下浄水池ともにソリッド要素でモデル化し、 境界条件は四方の側方境界を粘性境界、下方境界を剛基 盤とした.解析プログラムは DIANA を用いた.

## 2.3 入力地震動

入力地震動は、札幌市が作成したレベル2想定地震波 を用い、図4に示した地震動を下方基盤から入力した. 入力地震動の最大加速度は 633.64(Gal)である.地震時応 答の三次元性を評価するために、図-1 に示したように、 入力地震動の加振方向は、地下浄水池の長軸方向および 短軸方向とした.

## 2.4 解析用物性值

構造物および地盤の動的物性値をそれぞれ表-1と表-



図-1 解析モデルの全景(地盤-構造物連成系)



図-2 解析モデル(地下浄水池のみを表示)



図-3 地下浄水池内部の状況



キーワード:水道施設,地下浄水池,耐震性能照査,三次元動的解析,地震時応力 連絡先:〒036-8561 弘前市文京町3, 弘前大学大学院理工学研究科地球環境学コース Tel・Fax 0172-39-3608 2 に示す.構造物は鉄筋コンクリート造とし,地盤に関 しては S 波速度 210m/s と 480m/s の 2 層に地盤を設定し た.減衰定数については強震時のひずみ依存性を考慮し て一般的な値よりも大きな値を設定した.

| 表-1 構造物の動的物性値 |                            |                         |            |          |  |
|---------------|----------------------------|-------------------------|------------|----------|--|
| 項目            | せん断剛性<br>N/mm <sup>2</sup> | 密度<br>g/cm <sup>3</sup> | 動ポア<br>ソン比 | 減衰<br>定数 |  |
| 地下浄水池         | 9400                       | 2.35                    | 0.2        | 0.04     |  |

| 地盤     | 層厚<br>m | せん断剛性<br>N/mm <sup>2</sup> | 密度<br>g/cm <sup>3</sup> | 動ポア<br>ソン比 | 減衰<br>定数 |  |
|--------|---------|----------------------------|-------------------------|------------|----------|--|
| Soil-1 | 12      | 90                         | 2.06                    | 0.4        | 0.08     |  |
| Soil-2 | 8       | 506                        | 2.20                    | 0.4        | 0.08     |  |

#### 表-2 地盤の動的物性値

# 2.5 解析結果

地下浄水池表面の地震時引張応力分布を図-5 に示す. 図-5の上段は長軸方向に加振した場合の結果であり最大 引張応力は 23.0N/mm<sup>2</sup>,下段は短軸方向に加振した場合 の結果であり最大引張応力は 28.3N/mm<sup>2</sup>となった.地震 動によって発生する応力の出現場所は,長軸方向加振で は地下浄水池の左側の地下二階部分,短軸方向加振では 右側の地下二階部分となった.地下二階の外周部で地震 時引張応力が大きくなったことについては,構造物と連 成している地盤のひずみが影響しているのではないかと 考えられる.

次に、地下浄水池内の中柱および耐震壁での地震時引 張応力分布を図-6に示す.また、図-7に示した出力位置 での地震時引張応力の値を表-3に示す.長軸方向加振で の中柱頂部の最大引張応力は 13.9N/mm<sup>2</sup>,短軸方向加振 では 11.6N/mm<sup>2</sup>となった.地震時応力の出現場所は、長 軸方向加振では地下浄水池の左側の中柱群,短軸方向加 振では右側の中柱群となった.このように、地震時応力 の出現場所が加振方向によって大きく変化することは地 震時応答の三次元性の現れであり、地下浄水池の形状が 複雑になればなるほど地震時応答に及ぼす加振方向の影 響、すなわち三次元性は大きくなるものと考えられる. 大規模で形状が複雑な地下浄水池の耐震性能を適確に照 査するためには三次元性を考慮することが可能な、三次 元動的解析による解析評価が必要であると考えられる.

## 3. あとがき

地震時応力は、構造物の形状や剛性の変化部、構造物 内部の中柱頂部等で大きくなると考えられるので.大規 模な地下浄水池の耐震性能を照査する際には、形状や構 造の変化部、内部の中柱等の損傷・破壊に着目した評価 が重要であると考えられる.









| 表3  | 地下》  | 争水洲口    | 「部の「   | 中柱頂         | 部の        | 最大引   | 張広ナ | 1 |
|-----|------|---------|--------|-------------|-----------|-------|-----|---|
| L U | 2011 | 1.11101 | -~·IHt | 1 1 1 1 7 7 | < 111 / 2 | 4×ノ、ノ |     | , |

|          | 最大引張応 | 力(N/mm²) |          | 最大引張応力(N/mm <sup>2</sup> ) |      |  |
|----------|-------|----------|----------|----------------------------|------|--|
| 出力<br>位置 | 長軸方向  | 短軸方向     | 出力<br>位置 | 長軸方向                       | 短軸方向 |  |
| 19       | 3.99  | 3.69     | 27       | 3.71                       | 9.68 |  |
| 20       | 7.14  | 6.67     | 28       | 4.39                       | 11.6 |  |
| 21       | 4.85  | 10.0     | 29       | 3.47                       | 5.39 |  |
| 22       | 10.8  | 0.78     | 30       | 6.08                       | 9.68 |  |
| 23       | 13.9  | 2.48     | 31       | 3.71                       | 1.21 |  |
| 24       | 9.57  | 9.38     | 32       | 9.90                       | 7.30 |  |
| 25       | 0.59  | 0.65     | 33       | 1.41                       | 3.38 |  |
| 26       | 6.08  | 1.21     |          |                            |      |  |



図-7 地下浄水池内部の中柱の代表出力位置

参考文献

1) 札幌市: 地震動及び被害の評価事業, 2008