下水処理施設の免震・免波構造における免波効果の解析について

1. まえがき

沿岸域に位置する下水処理施設に関しては、強震動に対する 安全性とともに、津波の波力に対する安全性の確認と確保が必 要になる.このような必要性から、強震動に対する免震効果と 津波の波力に対する免波効果を併せ持つ、免震・免波構造に関 して、ここでは、津波の波力に対する免波効果に着目し、三次 元解析によりその解析法について基礎的な検討を行った。免 震・免波構造の概念は図-1に示すとおりである.

2. 三次元解析による検討

2.1 概要

2011 年東北地方太平洋沖地震での下水処理施設の地 震被害事例を参考にしながら,地上2階・地下2階の半 地下構造物を検討対象とした.津波の波力は,SPH法に よる解析結果に基づいて設定し,構造物の壁面に分布荷 重として作用させ、津波の波力が作用した場合の構造物 の変位と応力の解析法について検討した.

2.2 解析モデル

三次元解析モデルの全景を図-2 に示す. 解析モデル は、図-3 に示したように、無対策モデルを 1 ケース、 免震・免波構造モデルを 2 ケース(免震材充填モデルと 開放モデル)の計 3 ケースを設定した. 構造物の寸法は、 高さ 28.4m,幅 20.0m、奥行き 14.0mとした. 基礎地盤は、 水平の二層構造を仮定し、深さ 30m、幅 76m、奥行き 70mの範囲をモデル化した. 構造物、基礎地盤ともにソ リッド要素でモデル化した. 免震材充填モデルと開放モ デルでは、図-4 に示したように、接触面の剥離・滑動 (回転・並進)を評価することが可能なように、構造物 と免震材の接触面、および、構造物と免震ゴムの接触面 にジョイント要素を配置した.解析は線形解析とし、解 析プログラムは ISCEF を使用した.

2.3 解析用物性值

構造物と免震材の物性値を表-1 に、地盤の物性値を 表-2 に示す.また、ジョイント要素の物性値を表-3 に 示す

2.4 津波の波力

津波の波力は,SPH法の解析結果¹⁾を基に表-4 に示し たように,無対策モデルでは 400kPa,免震材充填モデ ルでは 350kPa,開放モデルでは 260kPa とした.

弘前大学	学生会員	○佐藤	優乃
弘前大学	非会員	加藤	恵佑
弘前大学	フェロー会員	有賀	義明

図-1 免震・免波構造の概念

キーワード:水循環施設,地震対策,免震,免波,津波波力,三次元解析 連絡先:〒036-8561 弘前市文京町3,弘前大学大学院理工学研究科地球環境学コース Tel・Fax 0172-39-3608

図-4 ジョイント要素の配置

津波波力の作用方向は、図-1に示したように、構造物の短軸方向とし、地表面から高さ6.5m、幅20mの矩形のエリアに分布荷重として作用させた.

2.5 解析結果

(1) 変位

津波の波力が作用した時の変位状況を図-5に示す.無 対策モデルでは、構造物の半分が地中に埋設されている ため、津波の波力が作用した構造物の正面で変位が発生 していることが分かる.免震材充填モデルと開放モデル では、構造物全体が回転したことを示す結果が得られた. なお、免震材充填モデルよりも開放モデルの方が変位量 が大きい結果となった.

(2)応力

解析結果の一例として、津波の波力が作用した場合の 構造物の壁面での応力分布を図-6に示す.引張応力の最 大値は、無対策モデルでは4.49 N/mm²、免震材充填モデ ルでは3.67 N/mm²と開放モデルでは2.78 N/mm²となった. (3) まとめ

津波の波力を作用させた場合,無対策モデルでは構造 物が固定されているため津波波力の作用面に大きな変形 と応力が発生した.一方,免震材充填モデルと開放モデ ルでは,構造物の底面と免震ゴムの接触面で剥離が発生 し,構造物全体が回転したことにより構造物壁面の応力 が緩和されたものと考察される.

3. あとがき

津波に対する免波効果を解析するために、ジョイント 要素を用いて構造物の剥離・滑動(回転・並進)を考慮 し得る解析法について基礎的な検討を行ったところ、あ る程度、模擬することが可能であることを示す結果を得 ることができた. 今後の課題としては、解析用物性値の 設定法、津波波力の分布形、津波波力の作用方法(静的、 動的)等の検討があると考えている.

参考文献

1)竹内幹雄,有賀義明,渡辺高志,川口昇平,西本安志,堀宗 朗,有川太郎:流動性を有するアスファルト系免震材を用いた 免震・消波構造に関する基礎的考察,土木学会論文集A1(構 造・地震工学),Vol.71, No.4, I_235-I_245, 2015

表-1 構造物と免震材の物性値

項目	せん断制性 N/mm ²	密度 3 t/m	ポアソン比
構造物	14600	2.40	0.20
免震ゴム(硬質ゴム)	5000	0.96	0.49
免震ゴム (軟質ゴム)	5	0.96	0.49
流動性免震材	0.24	1.00	0.49

表-2 地盤の物性値

項目	層厚	せん脚性	密度	ポアソン比
	М	N/mm ²	t/m	
第一層	15.4	16	2.0	0.40
第二層	14.6	240	2.2	0.35

表-3 ジョイント要素の物性値

項目	法線方词性	引腿粉度	せん断渡
	N/mm ²	N/mm ²	N/mm ²
ジョイント要素	35040	0.96	0.49

表-4 解析ケース

解析モデル名	津波の波圧	作用力向		
	kPa			
無対策モデル	400	構造物の		
免震材充填モデル	350	短軸方向		
開放モデル	260			
	 解析モデル名 無対策モデル 免震材充填モデル 開放モデル 	解frtデル名津波の波圧 kPa無対策モデル400免震材充填モデル350開放モデル260		

● 免震材充填モデルと開放モデルでは構造物が回転変位 図-5 津波の波力による変位状況

図-6津波の波力による応力分布