金網枠付き EPS, 鋼格子部材および砂による落石緩衝材に関する研究

金沢大学大学院 ○学生員 上杉 拓矢 (株)ライテク 徐 紳翔 金沢大学 正 前川 幸次

1. はじめに

ロックシェッドには落石衝撃力を緩衝する目的で砂を緩 衝材として敷き詰めた工法や発泡スチロール(EPS)を積 層する工法等が用いられてきた.砂を緩衝材として用いた ものでは自重による負荷が大きく,EPSは砕けたときに飛 び散る特性,EPS単層では荷重分散効果が期待できない特 性があり,荷重分散効果を期待できる三層緩衝構造¹¹に関し ても施工性や工期が課題である.本研究では,これまでの 工法に代わる金網枠とEPS,鋼板製格子部材を用いた新た な緩衝材について衝撃載荷試験²¹と衝撃解析を行った.

2. 落錘衝撃載荷試験概要と緩衝材

この試験ではラフタークレーンにより重錘を落下高まで つり上げ、土間コンクリート上に設置した供試体中央に鉛 直落下させる. なお、重錘は EOTA³の実験重錘規格に準じ たものを使用し、実験条件を表-1 に示す. それぞれ同じ構 造の緩衝材を使用し、実験装置としては図-1に示すように EPS (幅 1000mm×長さ 2000mm×高さ 500mm) を 2 個 並べて金網(4075×75)で囲んだ金網枠付 EPS を長さ 6150mm×幅 6150mm に並べたものを2段に重ね,その上 に鋼板製格子部材「FB-9×100とRB-16を200×200の格 子状に構成]を配置し、さらにその上に砂を 500mm 厚で 敷設した. 土間コンクリートには図 - 2 のような溝面に土圧 計を設置し砂層 50mm を介して金網枠付 EPS を配置した. 重錘内部には3軸加速度計を設置し、高速度カメラにより 落下状況を把握した. なお, 重錘加速度と質量の積として 重錘衝撃力を求め、図-2の半径方向の土圧計4個毎に1/4 円の面積分を行ってそれらの合計値を伝達衝撃力とした.

表-1 実験 case

	重錘質量(t)	落下高(m)	エネルギー (kJ)
case1	2.5	20	490
case2	3.2	20	627
case3	4.2	25	1029

3. 実験結果

図・3 の実線および破線はそれぞれ各実験による重錘衝撃 力および伝達衝撃力を表す. 重錘衝撃力の初期の立ち上が りについては重錘の質量が大きなものほど大きくなってい る傾向があり、重錘衝撃力の第2波としては2.5t, 3.2tの 場合は初期の立ち上がりと同等または小さくなっているが 4.2tにおいては第2波の方が大きくなっている. 重錘が2.5t, 3.2t, 4.2t と大きくなるにしたがって、伝達衝撃力の最大値 と重錘衝撃力の最大値の差が大きくなっている. したがっ て、重錘 2.5t においては緩衝材としての性能が発揮された と考えられるが、3.2t、4.2tにおいては緩衝性能以上の衝撃 エネルギーが伝達されたと考えられる.よって、本供試体 の落石緩衝材では 490kJ から 627kJ の範囲に衝撃力吸収性 能の限界があると考えられる. EPS の荷重分散範囲について はどのケースにおいても、1層目と2層目で重錘落下地点周 辺 4.0m²の範囲で変形が見られた.また、case3 の 2 層目 については重錘落下地点 0.8m²で局部的な変形が見られた. case3における EPS の変形を図-4 に示す.

キーワード: EPS, 落石緩衝材, LS-DYNA 連絡先:〒920-1192 金沢大学理工研究域 環境デザイン学系 Tel & Fax 076-234-4602

-997-

図-3 時間-衝撃力(実験値)

図-4 case3 EPS 変形状況

4. LS-DYNA による衝撃解析の概要

解析モデルの作成において金網枠付 EPS は、ソリッド要 素を用いて 1 つの EPS ブロック(長さ 2000mm×幅 2000mm×高さ 500mm)として作成し、土間コンクリート 上に並べ2段積み重ねた. さらにその上部には鋼板製格子 部材をビーム要素で作成したものを設置し、さらにその上 部にソリッド要素で作成したサンドクッション厚 500mm を配置し供試体モデルとした. その際に EPS ブロックに用 いた材料モデルは、金網の拘束効果を考慮するために重錘 に近い直径 1m の載荷板を用いて別途行った金網枠付 EPS の静的載荷試験から仮定した. 解析モデルにおいて入力し た金網枠付き EPS とサンドクッションの応力・ひずみ曲線 を図-5に示す.また,重錘はソリッド要素で作成し,各 case の衝突速度を与えた. なお,実際の落錘衝撃載荷試験では 側壁により供試体全体を囲っているが、解析モデルの簡略 化のため側壁の代わりに、EPS、鋼板製格子枠およびサン ドクッションの側壁に接する節点の水平変位を拘束した.

図-5 応力-ひずみ曲線

5. 解析結果

解析による重錘衝撃力と伝達衝撃力(土間と EPS ブロッ クの接触力の総計)を図・6 に示す.解析時間間隔 0.01ms で行い、1ms 間隔で出力した.重錘衝撃力の実験値(図・3) と解析値(図・6)から、初期の立ち上がりに関しては重錘 毎に同じような衝撃力の値をとっており、約 70~80ms に おいて生じる第2波のピーク値に関しても、4.2t の場合は 解析値の方が小さい値をとっているものの、おおよそ同じ 衝撃力が発生している.伝達衝撃力に関しては重錘衝撃力 の初期の立ち上がりの後に遅れて伝達衝撃力が発生する点 は再現できているものの、実験値においては見られない第 2波が生じる結果となった.これは、サンドクッション(6m ×6m×0.5m)を連続体としていることから、現段階では 解析画像等からサンドクッションが重錘よりも遅れて落下 衝突したことによると思われる.

6. おわりに

金網枠付 EPS と鋼板製格子部材,砂を用いた緩衝材において490kJから627kJが衝撃力吸収性能の限界であることが分かった.LS-DYNAを用いた解析では解析挙動,重錘衝撃力に関しては実験をほぼ再現することができた.

参考文献

1) 佐藤京,他:重錘落下実験による三層緩衝構造の緩衝特性について、開発土木研究所月報 No. 504, pp. 3-12, 1995.

2) S.Hsu(徐紳翔), 他:Experimental Study on the EPS-based Shock Absorber with Steel Grid or EVA-sheets for Rock-shed, Proc. of EASEC-14, 1503-1511, 2016.

3) EOTA: Guideline for European Technical Approval of falling rock protection kits- ETAG 027, 2000.