横置き円筒形タンクのスロッシング振動に関して

中央大学	学生員	〇因	和樹		中央大学	正会員	平野 廣和
ニュー	トンワーク	ウス(株)	非会員	長沼 寛樹	中央大学	正会員	佐藤 尚次

1.はじめに

石油タンク等に代表される円筒形タンクや貯水槽 などで用いられる矩形タンクにおけるスロッシング 振動の研究は、著者らを含めさまざまなところで行わ れてきた¹⁾. 矩形の直径 L と水位 H が決まればスロッ シングの固有振動数は式(1)に示す Housner の式から求 められることが知られている.

$$f_{i} = \frac{1}{2\pi} \sqrt{\frac{(2i-1)\cdot\pi \cdot g}{L} \cdot \tanh\left[\frac{(2i-1)\cdot\pi \cdot H}{L}\right]}$$
(1)

fi:スロッシングi次固有振動数, H:水位, L:代表幅

一方,輸送用のタンクに代表される横置き円筒形の タンクについては、必ずしも多くの研究例は報告され ていない.長い方向(以下,長辺)と短い方向(以下, 短辺)の二つの代表幅があることから矩形タンクと対 比させて考えるのが妥当と思われる.この幅が異なる ということは、加振方向角によってスロッシング挙動 が異なるが、矩形断面においては遠田ら²⁾の研究があ り、Housnerの式が加振方向の長さを代表幅Lとして 適用できることを示している.

そこで本報では、円筒形タンクを横に置いた状態 で、長辺、短辺方向にそれぞれ加振したときのスロッ シング振動発生時の Housner の式の適用性に関して検 討を行うものである.具体的には、小型振動台での加振 実験と数値流体解析の2種類の異なる手法での検討を 行う.この結果、横置き円筒形タンクのスロッシング振 動に矩形の式の適用の可能性が場合分けによって判っ たので、ここに報告をする.

2. 実験概要

写真-1に振動実験に用いる φ200mm×500mmのアク リル製円筒容器(以降,横置き円筒形タンク)を示す. また,**表-1**に横置き円筒タンクの諸条件を示す.

この横置き円筒形タンクを小型振動に設置して加振 実験を行う。波高計測は、アクリルの壁面を介してタン クの端部から100mmの地点にレーザー変位計を設置す る.なお、端部に関しては定規を設置して VTR 撮影を 行い画像解析から算定をする.

加振条件は,長辺方向 0.9Hz~1.3Hz,短辺方向 2.0Hz ~2.4Hz,振幅 1mm,10 波の正弦波加振とし,加振終了 後に自由減衰へ移行させる手順とする.

3. 解析概要

数値流体解析には、汎用有限要素解析ソフトウェア である ADINA を用いる. このソフトの特徴は、流体部 のみの解析と流体問題と構造問題を一つのマトリック スで解くタンクー流体連成解析³⁾が可能となっている ことである.

本解析に用いる横置き円筒形タンクの解析モデルを 図-1に示す.また、タンク部を Shell 要素、流体水面を 自由水面とし、ポテンシャルベース流体方程式を用い て解析を行う.

Housner式の値 | 1.091 | 2.158 | 2.792 | 3.304 | 1.962 | 3.420 (1) 固有値解析

算出したスロッシング固有振動数の解析値と Housner の式から算出した値とが一致するかどうかの 把握を行う.また,液面モードの算出を行い,可視化す ることで,実験結果との挙動の一致の把握を行う.

(2)時刻暦応答解析

タンクー流体の連成体を行う場合,まず自重の釣り 合い計算を行うための静的解析を行い,これを動的計 算の初期条件とする.次に動的解析を行い,本報では加 速度を入力条件とする.ところで流体の基礎方程式は ポテンシャル流れであるので,減衰として実験から得 られた減衰を Rayleigh 減衰の形で与える.しかし, ADINA はこの減衰を構造部分の要素のみにしか付加す ることができない.そこで一つの特殊なモデル化とし て自由水面としている液面表面に,無視できる程度の 厚さの薄い Shell 要素を仮定し,ここへ減衰を与えるこ ととする.

4. 解析結果及び実験結果

(1) 固有振動数

実験時の長辺方向と短辺方向の1次液面モードの結果 を写真-2(a),(b)にそれぞれ示す.長辺方向では0.9Hz ~1.3Hz において,Housnerの式の値(1.09Hz)付近の 1.1Hzのときに最大波高となり,1次モードの挙動が見 られた.一方,短辺方向では,2.0Hz~2.4Hz において, Housnerの式の値(1.96Hz)とは離れた 2.2Hz で最大波高 となり,1次モードの挙動が見られた.

また,表-2に連成解析値と Housner の式から算出し

キーワード : 数値流体解析,円筒形タンク,スロッシング現象,時刻暦応答解析 連絡先 : 〒112-8551 東京都文京区春日 1-13-27 tel.03-3817-1816 fax.03-3817-1803

たスロッシング振動数の値, 図-2(a),(b)に2方向にお ける1次液面モードの連成解析結果を示す.これらよ り,長辺方向1次モードでは,解析値と Housner の式 の値の比較的一致かつ,1次液面モードが確認できる. 一方,短辺方向においては,実験と同様に,Housner の 式の値とは離れた値(2.30Hz)において,図-2の(b)に示 すような1次液面モードが確認できる.

また,実験では算出していない高次モードのスロッシン グ振動数の解析値を表-2,液面モードを図-3 (a),(b), (c),(d)に示す.これより,Housnerの値とは離れた値 において高次モードがそれぞれ確認された.その理由 として,Housnerの式の値を算出する際に横置き円筒形 を矩形として近似して算出していることや,モード数 が増加するにつれて値の差が増加する式であるためで あるといえる.

次に,2方向における実験値と解析値の入力振動数と 最大波高との関係を図-4(a),(b)に示す.長辺方向で はどちらの値においても 1.1Hz のときに最大波高とな った.つまり,実験と解析の両面において,長辺方向1 次モードは Housner の式の値の付近で発生することが 分かる.これは入力振動数と長辺方向での固有振動数 が一致して共振し,スロッシング挙動が発生している ことが原因である.これらより,長辺方向の1次モー ドにおいて Housner の式の適用が可能であるといえる.

一方,短辺方向においては実験値では 2.1Hz~2.3Hz 付近で最大波高となり,解析値では 2.2Hz~2.4Hz 付近 で最大波高になった. どちらの値とも Housner の式の 値(1.96Hz)とは離れた値となった.理由として,長辺方 向においては,断面が矩形であるのに対して、短辺方 向では断面が円形で曲線を描いており,水が壁面を乗 り上げるなどカーブ面が支配的であるため Housner の 式の値と離れてしまったといえる.また,実験値と解 析値の最大波高の差が生じた理由として流体がカーブ 面を乗り上げることによって起こる砕波を表現できな かったためと考えられる.

(2) 時刻歴応答解析

図−5 に実験円筒形タンクモデルの長辺方向加振 (1.1Hz)における,最大波高時の解析結果を示す.また, 図-6 に実験値及び解析値の時刻歴応答波高をそれぞれ 示す.解析における最大波高は加振開始約 8.9 秒後に 22.25mm を示した. 実験結果では,加振開始約 8.2 秒後 に最大波高約 23.44mm に達した. どちらの結果も,時間 の経過とともに最大波高に到着後、時間と共に振動が収 まって行くことが確認でき、1次モードのスロッシング 挙動を確認できる.また,減衰率は,実験結果において は約0.4%, 解析結果においても約0.4%となり, 両結果 とも比較的減衰が低い値をとることが分かる.このこ とから 1.1Hz において一度共振するとなかなか減衰し ないことが確認され、1次モードの形状をとっているこ とが分かる.よって,Housnerの式の値の付近の振動数 で加振した際、時刻歴応答波高の面から見ても長辺方向 の1次モードの波形をとることから, Housner の式の適 用が可能であるといえる.

次に,図-7(a),(b)に静水圧分布,1.1Hzにおける最大 波高時(加振開始 8.9 秒後)の全水圧の解析結果をそれ ぞれ示す.これらにより,タンク底部とタンク側面部の 接する部分(水位 0m)が最大平均圧力となっているこ

とが確認できる. このことから, 最大波高時にタンク底 部に圧力が働いているため 1 次モードのスロッシング 挙動が生じていることが分かる. よって, 解析において, 圧力分布の面から見ても Housner の式の値の付近にお いて 1 次モードのスロッシング現象が起きていると確 認できる.

5.おわりに

長辺方向においては Housner の値≒実験値となった ため,長辺方向においては Housner の式は適用可能であ ることが分かった.一方,短辺方向は内溶液の振動を考 える差異の断面が円形なため,水が壁面を乗り上げる などの要因により差が生じているので今後さらなる検 討が必要である.今後の課題として,角度変化による検 討や圧力変動応答を測定し,横置き円筒形タンクにお けるスロッシング挙動を把握していく必要がある.

参考文献

- 1) 酒井理哉,東貞成,佐藤清隆,田中伸和:溢流を伴う矩形水槽の非線形 スロッシング評価,構造工学論文集 vol.53,2007.3.
- 2) 遠田豊,井田剛史,平野廣和,佐藤尚次:矩形断面容器において 加振方向角を変化させた場合のスロッシング現象,応用力学論文 集,Vol15, 2012. 8
- 3) 荒井 他:立方体および円筒タンクのスロッシングとスワーリン グの数値解析,日本船舶海洋高額会,関西造船協会誌,第219号, pp97-101,1993.