台形 CSG ダムの地震時挙動に対する地震動強さ及び堤高の影響

国立研究開発法人土木研究所 正会員 〇中田 哲二、金銅 将史、榎村 康史、小堀 俊秀

1. はじめに

ダム事業において、経済性や環境配慮の面からダム サイト近傍で得られる河床砂礫などの礫質材料を簡易 な設備を用いてセメント・水と混合して製造する CSG¹⁾(Cemented Sand and Gravel)を主な堤体材料とする 新型式のダムである台形 CSG ダムの建設・計画事例が 増えつつある。筆者らは、台形 CSG ダムの耐震性能照 査手法を確立するため、大規模地震時における同型式 ダムの損傷形態を含む動的挙動について地震応答解析 による検討を行ってきた²⁾。本報では、今後、既往施工 事例(堤高 50m 規模)よりも大規模な台形 CSG ダムが建 設される場合も想定し、線形動的解析及び堤体材料の 引張軟化を考慮した非線形動的解析により通常考えら れる以上の極めて強い地震動を考慮した場合も含めて 地震動強さやダム規模(堤高)の違いによる台形 CSG ダ ムの地震時挙動への影響について検討した。

2. 解析条件

解析モデルとして、堤高 50m 及び同 100m の一般的 な断面形状の台形 CSG ダム堤体、基礎岩盤及び貯水池 をモデル化した。なお、台形 CSG ダムでは堤体の大部 分を占める CSG より強度が高い止水・構造コンクリー トや保護コンクリートが上流側及び表面に配置され(図 -1)、断面設計の応力解析は相対的に強度が低い CSG の 物性値で代表させて行われるのが通常であるが、大規 模地震時の動的挙動を精度よく推定することを目的と する本検討では、図-1 に示す堤体内部構造(内部及び富 配合 CSG と止水・構造用コンクリート及び保護コンク リート)を考慮した解析モデルを用いた。

図-1 解析モデル形状の例(堤体部、堤高100m) 解析での物性値は、表-1に示す値とした。このうち、 内部 CSG の弾性係数と弾性領域強度(圧縮強度試験で 得られる応力-ひずみ関係における弾性領域の最大応 力)は、堤高 50m では既往施工事例、堤高 100m では計 画中の検討事例を参考に設定した。富配合 CSG は、内 部 CSG の圧縮強度(ピーク強度)に対する富配合 CSG の 同強度の比を、既往施工事例や両配合を想定した供試 体試験結果³⁾を参考に設定した。コンクリートは圧縮強 度を 24N/mm²とし、引張強度はその 1/10 とした。

表-1 物性值一覧

		堤高 50m		堤高 100m		両モデル共通	
		内部	富配合	内部	富配合	コンクリート	岩般
	\sim	CSG	CSG	CSG	CSG	.,, 1	
弹性領域強度	(N/mm ²)	3.5	_	6.0	—		
圧縮強度 f_c	(N/mm ²)	5.0	7.0	9.0	12.0	24.0	-
引張強度 f_t	(N/mm ²)	0.5	0.7	0.9	1.2	2.4	-
弾性係数	(N/mm ²)	2,000	3,000	5,000	7,000	25,000	2,000
単位体積重量	(kN/m ³)	22.54	22.54	22.54	22.54	22.54	22.54
ポアソン比		0.25	0.25	0.25	0.25	0.20	0.30
破壊エネルギー G	(N/m)	70	90	100	130	200	-

非線形動的解析で引張軟化による損傷過程の再現に 必要となる破壊エネルギー G_F は、コンクリート及び CSG については、堀井ら⁴⁾によるダムコンクリートに ついての実験式である式(1)の関係を用い、表-1の圧縮 強度 f'_c 及び粗骨材最大粒径 d_{max} =40mmとして設定した。

 $G_F = (0.79d_{max} + 80) \times (f_c'/10)^{0.7} \cdot \cdot \cdot (1)^{4}$

なお、CSG の破壊エネルギーは、筆者ら³⁾の実験で は式(1)で得られる値よりやや大きな値が得られている。 また、同実験では標準供試体(粗骨材最大寸法 40mm)で の結果しか得られていないため d_{max} =40mm としたが、 既往施工事例では d_{max} =80mm が一般的である。よって、 本検討での設定値はやや安全側の値と考えられるが、 引張軟化を伴う損傷形態をより明確に把握する上でも 上記設定とした。また、堤体材料の引張軟化特性は、 CSG は筆者ら³⁾の実験から推定した引張軟化曲線に基 づく図-2のモデル、コンクリートは、コンクリート標 準示方書⁴⁾の2直線モデルを用いた。

入力地震動は、解析モデルの堤体底面で、大規模地 震に対するダムの耐震性能照査で考慮される照査用下 限加速度応答スペクトル⁶となるよう調整した加速度 波形(最大水平加速度 341gal、同鉛直加速度 213gal)及び その振幅を 2 倍及び 3 倍に引伸した波形とし、各々の 波形が堤体底面で再現されるよう引き戻した加速度波 形を解析モデル底面から入力した。

キーワード 台形 CSG ダム, 耐震性能照査, 非線形動的解析 連絡先 〒305-8516 茨城県つくば市南原 1-6 国立研究開発法人土木研究所 研究企画課 TEL029-879-6751

図-2 解析に用いた CSG の引張軟化特性

3. 解析結果

線形動的解析で得られた大規模地震時の主応力分布 (発生応力のピーク値の分布)及び非線形動的解析で得 られた引張軟化領域を図-3に示す。同図の主応力分布 から、堤体上下流端部や保護コンクリート部の応力が 大きいことがわかる。また、堤体内 CSG の止水・構造 用コンクリートとの境界部においても局部的に応力が 大きくなっている。各部での発生応力の値は引張応力 (最大主応力 σ₁)、圧縮応力(最小主応力 σ₃)とも全般に 堤高 50m よりも堤高 100m の方が大きくなっているこ とがわかる。引張軟化領域は、加速度1 倍の場合、堤 高 50m では引張軟化は生じておらず、堤高 100m でも 軟化領域は上流端付近の一部である。加速度 2 倍の場 合、堤高 50m では上下流端部や保護コンクリート部に、 堤高 100m ではさらに堤体内 CSG の止水・構造用コン クリートとの境界部周辺にも軟化領域が生じている。 加速度3倍の場合、堤高50mでも堤体内CSGの止水・ 構造用コンクリートとの境界部周辺で軟化領域が生じ、 下流端付近の軟化領域も広がっている。堤高 100m では 上下流端からの堤体底面沿いに軟化領域が広がり、下 流面の中標高付近では堤体内 CSG にも軟化領域が広が っている。なお、引張応力がゼロとなる開口ひび割れ

は堤高100mの加速度3倍の場合のみ生じており、その 箇所は堤体内CSGの止水・構造用コンクリートとの境 界(隅角部)付近である。

4. まとめ

- ・ 台形 CSG ダムでの大規模地震時の堤体内発生応力 は、堤高が高くなると全般的に大きくなる。
- 大規模地震時の引張軟化領域も堤高が高くなると広くなり、地震動強さが極めて大きくなると堤体上下流端部や保護コンクリート部のほか堤体内 CSG の止水・構造用コンクリートとの境界付近からも軟化領域が生じる。

参考文献

- 1) 台形 CSG ダム設計・施工・品質管理技術資料,財団 法人ダム技術センター,2012.6.
- 2) 榎村康史、金銅将史ら:大規模地震時における台形 CSG ダムの動的挙動の推定に関する解析的検討、土 木研究所資料、第4324 号、2016.3.
- 7) 榎村康史、金銅将史ら: CSG の動的引張強度・破壊 特性等に関する実験的検討、土木研究所資料、第 4320 号、2016.3.
- 4) 堀井秀之ら:コンクリートダム耐力評価のための引 張軟化特性の検討、電力土木、286、pp.113-119、2000.3.
- 5) 土木学会: 2012 年制定コンクリート標準示方書[設 計編]、pp.37-43、2013.
- 6) 国土交通省河川局:大規模地震に対するダム耐震性 能照査指針(案)・同解説、2005.3.

図-3 大規模地震時の発生応力及び引張軟化範囲