長周期地震動記録を用いた超高層建物の振動特性の把握

1. 研究目的

現在,長周期地震動による超高層建物の被害や機 能損傷が懸念されている.2011年東北地方太平洋沖 地震においても,震源から遠く離れた新宿の超高層ビ ル群や大阪湾岸の超高層ビルなどでエレベータ停止 や内装材,防火扉の破損などの被害が多く発生した. 超高層建物の数は,年々増加し続けており,その大部 分が3大都市圏(東京,名古屋,大阪)に集中してい る.大都市圏の位置する関東平野,濃尾平野,大阪平 野では,いずれも地盤固有周期が長く,長周期の構造 物と共振を起こしやすいことが問題である.そこで 本研究では,実際の地震観測記録¹⁾を用いて,大阪湾 岸の超高層建物に対する振動特性の把握を行う.

2. 対象建物と地震動

大阪湾岸に位置する地上55 階建てのS造建物を検 討対象とする.地階は鉄骨鉄筋コンクリート造であり, 1 階以上は鉄骨造となっている²⁾.地震計は1F,18F, 38F,52Fの各階に設置されており,3成分の加速度を 記録する.対象地震動を表1に一覧を示す.本震前後 の振動特性を把握するために,異なる7種類の地震動 を用いた.

図1は、本震における各階での加速度記録である. 階が上がるにつれて応答が増幅していることが確認 できる.また、図2に52Fにおける1Fに対する加速 度フーリエスペクトル比を示す.これより、1次から 3次までの固有振動数(固有周期)が0.15,0.48,0.91Hz (6.6,2.1,1.1s)であることが確認できる.

図1 本震における各階の観測加速度記録

千葉大学大学院 工学研究科 学生会員 〇竹平匠吾 千葉大学大学院 工学研究科 正会員 山崎文雄

表1 対象地震動

表示	地震名	発生日時	発生時刻	規模	震央距離(km)
前震	三陸沖	2011/3/9	11:45	M7.3	813
本震	東北地方太平洋沖	2011/3/11	14:46	M9.0	769
最大余震	茨城県沖	2011/3/11	15:15	M7.6	555
長野	長野県北部	2011/3/12	3:59	M6.7	387
静岡	静岡県東部	2011/3/15	22:31	M6.4	309
宮城	宮城県沖	2011/4/7	23:32	M7.2	704
淡路島	淡路島付近	2013/4/13	5:33	M6.3	59

図2 本震における1階に対する52階の加速度 フーリエスペクトル比

3. 同定手法

固有周期,刺激関数,減衰定数などのパラメータを 伝達関数の適合法³⁾により同定する. 伝達関数の観測 記録として,同定する建物の k 階における 1 階に対す るフーリエスペクトル比を用いる. 各フーリエスペ クトルを求める際には, ラグ・ウインドウ(バンド幅 0.01Hz)を用いて平滑化を施した.

最初に各次固有周期を観測記録の伝達関数の頂点 より定める.次に、伝達関数の観測記録と理論解の振 幅 $|G_{K}(\omega)|$ (式(1))について最小二乗法を用いて適 合させる.同定する建物のk階におけるj次の刺激関 数 $\beta_{j}\varphi_{j,k}$,減衰定数 h_{j} を定めていく.一般的に応答を 評価するうえで充分と考えられる 3 次モードまでを 同定していく.

$$|G_{K}(\omega)| = \sqrt{G_{KR}(\omega)^{2} + G_{KI}(\omega)^{2}} \qquad B_{j} = \frac{\omega}{\omega_{j}}$$

$$G_{KR}(\omega) = \sum_{j=1}^{N} \frac{1 + (h_{j}B_{j})^{2} - B_{j}^{2}}{(1 - B_{j}^{2})^{2} + (2h_{j}B_{j})^{2}} * \beta_{j}\varphi_{j,k}$$

$$G_{KI}(\omega) = \sum_{j=1}^{N} \frac{-2h_{j}B_{j}^{3}}{(1 - B_{j}^{2})^{2} + (2h_{j}B_{j})^{2}} * \beta_{j}\varphi_{j,k}$$
(1)

また本研究では、伝達関数の適合法を行う際に、1 ~3次までの同定を同時に行わず、1つずつ行うとい う、式(1)の処理に関して異なる手順で行った.具体 的には、伝達関数の観測記録での卓越している山の順 に計算を行っていく.

Key Words:長周期地震動,東北地方太平洋沖地震,超高層建物,伝達関数 千葉県千葉市中央区弥生町1-33,043-290-3557 例として、卓越している順が1,2,3次の場合は、最初 に1次の同定を施す.この時算出した各パラメータを 確定値として、次に2次の同定を施す.最後に1,2次 での確定値を用いて3次の同定を施す.

4. 振動特性の分析

図3に本震における52階での伝達関数の適合状況 を示すが、3次までの適合が施されていることが見て 取れる.図4に同定した1次固有周期の変化を示す. 前震から本震にかけての周期が伸びていることが各 水平成分で確認できる.短辺方向(X:229)で1.05倍, 長辺方向で1.06倍となっている.また、各水平成分 において本震以後での周期はいずれも前震で得られ たものより長いという結果になっている.2,3次に関 しても同様の結果が得られた.

図 5 に同定した短辺方向(X:229)での刺激関数を示 す.地震動によっての変動が少なく,応答形状を把握 することができた.図6に同定した各パラメータを用 いてモード合成法により算出した本震における52 階 での速度応答を示すが,観測記録とよく一致した結果 が得られた.図7に各次のモードの周期,減衰定数と 速度振幅の関係を示す.速度振幅としては,1F にお ける速度の観測値の最大(2 成分合成)を用いた.モー ドの周期と速度振幅に関しては,1,2,3 次ともに正の 相関がみられ,速度振幅の増加による周期の伸びが確 認できる.モードの減衰定数と速度振幅に関しては, 短辺方向(X:229)に正の相関が,短辺方向(Y:319)に負 の相関がみられた.水平成分による異なる減衰特性が 把握できた.

図3 本震における伝達関数の適合状況

図7 最大速度による固有周期の変化

5. まとめ

東北地方太平洋沖地震前後での複数の観測記録を 用いて,大阪湾岸の超高層建物においての振動特性の 変化について検討した.その際に伝達関数の適合法を 既往の研究とは異なる手順で施し,各パラメータを同 定した.結果として,本震以前からの固有周期の伸び, 建物の応答形状,固有周期,減衰定数の振幅依存特性 を示すことができた.

謝辞:本研究では,建築研究所および工学院大学での観測記 録を使用させて頂きました.記して謝意を表します.

参考文献

- 1) 建築研究所の観測記録:http://smo.kenken.go.jp/ja/smn
- M. Celebi et al. : Response of a tall building far from the epicenter of the 11 March 2011 M9.0 Great East Japan earthquake and aftershocks, Struct. Design Tall Spec. Build. 23, 427-441, 2014
- 3) 山下哲郎,久田嘉章,坂本有奈利,久保智弘:新宿超高 層街区に建つ鉄骨超高層建築の東北地方太平洋沖地震 前後の振動特性,日本地震工学会論文集,第12巻,第 4号(特集号),14-26,2012.