#### -290

# 繰り返し水平力を受ける鋼変断面片持ち柱の崩壊メカニズムの変動について

神戸市立工業高等専門学校 正会員 酒造 敏廣

## 1. まえがき

鋼骨組部材には,部材軸方向に材料強度や断面寸法を変化させた変断面構造 が採用される機会が多い.筆者らは,過去に,変断面片持ち柱の弾塑性履歴崩 壊性状を数値解析と実験で調べた<sup>1)-3)</sup>.そして,塑性変形箇所が異なる崩壊メ カニズムが繰り返しの半サイクル毎に交番すると,柱は一種の不安定現象を呈 する場合があることを指摘した<sup>1)</sup>.

本研究は,崩壊メカニズムの変化(=履歴ループの移動・縮小)が現れる条件を具体的に求めることを目的として,定鉛直荷重下で定変位振幅の水平繰り返し力を受ける変断面片持ち柱の弾塑性解析を行うものである.

### 2. 変断面柱の解析モデルと解析方法

図1に示す変断面片持ち柱を研究対象とする<sup>1)</sup>. 柱は2つの断面 Sec.1, Sec.2 からなる. 図2に示すように, 柱基部と断面変化点が 弾塑性変形するモードVとYを重ね合わせて, 回転バ ネ1, 2を組み込んだ変断面柱の弾塑性解析を行う. (1)水平増分力 Δ*H* と水平増分変位 Δ*y* の関係

 $\Delta H - \Delta y$ 関係は、微小な水平変位増分の区間で線形近似できるものとすると、次のように誘導できる.

$$\Delta H = \frac{k_1 k_2 + P^2 h_1 h_2 - P(k_1 h_2 + k_2 h)}{k_1 h_2^2 + k_2 h^2 - Phh_1 h_2} \cdot \Delta y \tag{1}$$

ここに、 $k_1$ ,  $k_2$ は回転バネ1,2の接線係数である.弾 性域のバネ係数 $k_i$  (= $k_{ei}$ )は、柱頭部と断面変化点のた わみが初等ばり理論による解と一致するように決めて いる.また、変位  $\Delta y$ ,  $\Delta y_1$ ,  $\Delta y_2$ と回転角  $\Delta \theta_1$ ,  $\Delta \theta_2$ の間 には、以下の関係がある.

$$\Delta y_1 = \frac{X}{1+X} \Delta y, \quad \Delta y_2 = \frac{1}{1+X} \Delta y, \quad X = \frac{h^2 k_2 - P h h_1 h_2}{k_1 h_2^2}$$
$$\Delta \theta_1 = \Delta y_1 / h, \quad \Delta \theta_2 = \Delta y_2 / h_2$$

各バネのモーメント  $M_i$  一回転角  $\theta_i$  関係は**図3**のように仮定した. 塑性モーメント  $M_{pi}$ の算定には軸圧縮力  $N_i$  (=P)の影響を考慮している. (2)崩壊メカニズムの変化について

バネ1,2のどちらの塑性変形が先行しても,繰り返し水平力下 で崩壊メカニズムが変化しない条件は,弾性変形を無視した剛塑性 理論に従うと,次のように表すことができる<sup>3)</sup>.

$$\left|P \cdot y\right| < \left|(1 - \frac{1}{\alpha})M_{p1} + \frac{1}{\alpha}M_{p2}\right|$$
(4)

ここに, yは柱頭部の水平塑性変位である.

キーワード 変断面柱,繰り返し曲げ,弾塑性挙動,崩壊メカニズム,不安定現象,Pム効果 連絡先 〒651-2194 兵庫県神戸市西区学園東町8-3 神戸市立高専・都市工学科 TEL078-795-3263

 $H \xrightarrow{-y_m} y_m$ 





 $(3)_{a,b}$ 



図3 回転バネiの $M_i - \theta_i$ 関係

表1 解析モデルの諸元

| $\overline{}$           | 断面幅 B <sub>i</sub> | 板厚 t <sub>i</sub> | 降伏点 $\sigma_{vi}$ |
|-------------------------|--------------------|-------------------|-------------------|
| Sec.i                   | (mm)               | (mm)              | (MPa)             |
| 1                       | 750                | 22                | 314~355           |
| 2                       | 750                | 22                | 235               |
| 注)柱高さ h=8m,正方形薄肉箱形断面:幅= |                    |                   |                   |

高さ=B, 板厚 t, 断面変化点 a=1/3,  $N_{y2}$ : Sec.2 の全断面降伏荷重,定鉛直荷重  $P=0.25N_{y2}$ ,  $k_{ti}=k_{ei}/10,000$ 

-579-

#### 土木学会第71回年次学術講演会(平成28年9月)



と考察

柱基部断面 Sec.1 の降伏点を 314MPa (Case 1), 340MPa (Case 2), 及び, 355MPa (Case 3) としたときの 解析結果から、H-y曲線、各バネの $M_i - \theta_i$ 曲線、及び、柱の変位モードを図4に示す。図中、バネ1、2が 最初に塑性モーメントに達するときの水平荷重Hのうち,小さい方を降伏荷重H,としている.

この図からわかるように、Case 1 と 3 の H-v 曲線は、繰り返しサイクル数にかかわらず履歴ループがほぼ 同一となる安定した弾塑性挙動を示している.このとき、柱はそれぞれV、Yの変位モードを呈している.

一方, Case 2 の柱では, 塑性変形箇所が半サイクル毎に柱基部と断面変化点で交番していることがわかる. 柱の変位モードがくの字となり、履歴ループの移動・縮小という特徴が現れている<sup>1)-3)</sup>. なお、解析した範囲 内では、柱基部 Sec.1 の降伏点  $\sigma_{v1}$  が約 332~344MPa の間にあるとき、Case 2 と同様な履歴ループの変動が現 れ、崩壊メカニズムが V から Y、あるいは、Y から V に変化する遷移領域になった.

### 4. まとめ

定鉛直荷重と繰り返し水平力のもとで現れる変断面片持ち柱の不安定現象を解析するために、回転バネを用 いて簡略化した弾塑性解析の手法を示した. 今後は, 変断面柱の解析条件を種々変化させて数値解析を行い, 履歴ループの変動が現れる遷移領域について明らかにしていきたい.

## 参考文献

1) 酒造:土木学会論文集, No.446/I-19, pp.127~136, 1992 年 4 月. 2) 酒造, 事口, 西: 構造工学論文集, 土 木学会, Vol.39A, pp.271~284, 1993 年 3 月. 3) Miki, T. and Nethercot, D.A.: Proc. of 5th International Conference on Stability and Ductility of Steel Structures, Japanese Session, Nagoya, pp.566-576, July, 1997.

-290