振動台実験による大型車の地震時転倒可能性に関する検討

横浜国立大学 学生会員 ○末藤 彧捷 学生会員 成田 顕次 正会員 SIRINGORINGO, Dionysius Manly フェロー 藤野 陽三

1. はじめに

2011 年 3 月 11 日の東日本大震災時に横浜ベイブリ ッジ下路スパン中央付近で1台の3軸6輪セミトレー ラーが転倒し、そのセミトレーラーを撤去するのに約 30 時間もの時間を費やした. 過去にも 1995 年の兵庫 県南部地震では阪神高速神戸線において大型車トラッ クが3 台転倒していた.既往の車両転倒に関する研究 においては、丸山ら¹⁾が車両の数値モデルとドライビ ングシミュレータを用いた横風時の走行模擬実験を行 い、車両の安定性の研究を行っている. このように車 両の安定に関する研究では、主に強風に着目している. 地震による車両転倒の研究では,成田ら²⁾が地震時の 高架橋を走行中の大型車の転倒解析を行っており、転 倒のシナリオとして、 ロールオーバーによる転倒とス リップによる転倒と定義し、数値解析を行った. しか し、数値解析による検討のみで、実験による検証が行 われていない. そこで、本研究では振動台実験を用い て模型トラックの数値モデルと転倒メカニズムについ て妥当性を検討することを目的とした.

2. 研究方法

本研究では研究方法として振動台を用いた模型実験 を行い,数値解析と模型実験の結果を比較した.模型 実験ではタミヤ社の1/14スケールの2軸4輪トラック (表1)を用い,振動台実験時のデータの取得としてはワ イヤレスモーションセンサー(LP-WS0905)を用いた.セ ンサー箇所は図1(a)に示すとおりである.

数値解析では成田等のモデルを模型実験の結果と比 較するために2自由度系まで簡易化し比較を行った。 この時に転倒現象の初期段階で見られる,リフトアッ プ現象に着目をした.(図2(a))

図1 模型トラック

表 1. 模型トラック緒元

模型トラック	単位
全長	568mm
全高	275mm
全幅	235mm
車両重量	4010g
ホイールベース	360mm
トレッド(F/R)	156mm/138mm
タイヤサイズ(幅/径)	22m/83mm

リフトアップ現象に着目すると成田等の数値モデル は図 2(b)に示すように 2 自由度系のモデルに簡略化す ることができる. そこで *A* 点と *B* 点周りのモーメント のつり合いに着目し, 方程式を立てると式(1)になる.

$$\sum M_{A,B} = (m\ddot{y} + J\ddot{\theta})h_{cg} \pm 2N_{2,1}b + m(g - \ddot{z})b \quad (1)$$

ここでの m は車両全体の慣性質量を示し,J は車両の ロール慣性モーメントを示し,b は車両のトレッド幅を いる. ÿ_g は振動台の入力加速度を示し, *ä* は車のロ ール方向の角加速度を示し, *ż* は車両の鉛直方向の加 速度を示している.接地圧に着目し,式(1)を変形する と以下のようになる.

$$\frac{N_i}{m} = \frac{(g - \ddot{z})}{2} \pm A(1 + \frac{\omega^2}{(\omega^2 - \omega_{\theta}^2)} h_{cog}) \frac{h_{cog}}{2b} e^{i\omega t} \quad (2)$$

式(2)から、車両の転倒の初期動作であるリフトアッ プ現象に影響しているパラメーターが入力振幅、重心 高さ、振動数比であることが分かる.そこで、入力振 幅 A、重心高さ $r=h_{cog}/2b$ 、振動数比 $\beta=\omega/\omega_0$ とおき、こ れらの値に着目し、実験結果と数値解析の比較を行っ た.

図2数値モデルとリフトアップ現象

キーワード : 車両転倒,模型実験,数値解析,地震応答解析

連絡先 : 〒240-8501 横浜市保土ヶ谷区常盤台 79-5 TEL 045-339-4243 FAX 045-348-4565

3. 実験手順

本研究の実験手順としては模型トラックの振動特性 を得る実験を行い,次に入力振幅や入力周波数,重心 高さを設定し,リフトアップ現象の有無を確かめる実 験を行った.

(1) 振動特性

振動台で正弦波加振を行い、ロール方向、鉛直方向の周波数応答倍率から、各方向の固有振動数を求めた. また、ハーフパワー法を用い、模型トラックのモード 減衰率を求めた.(図 3)

(2) リフトアップ現象再現実験

リフトアップ実験では入力振幅、重心高さ、振動数 比を変化させ、実験を行った.入力波によってはリフ トアップ現象が小さいためビデオカメラで撮影し、現 象の有無の確認を行った.

4. 実験結果と比較

実験によって得られた境界値と数値解析から得られ た境界値を比較すると図4のようになる.図4から模 型実験の結果と数値解析の結果が近い値を示し,数値解 析の妥当性を示すことができた.しかし,1.0以上の時 に差異が見られる.これはリフトアップ現象が微小で あるために目視による現象の確認が難しいために差が 生じたと考えられる.

5. 実橋梁での現象検討

これらの結果を踏まえて、実橋梁での地震時の車両 の転倒評価を行った.用いた橋梁は横浜ベイブリッジ,

金港ジャンクションである.これらの橋梁の東北地方 太平洋沖地震の最大応答値を定常正弦波とし,その時 の固有振動数,最大加速度に着目し,転倒領域を示し たものが図5,図6である.ここで小型車の固有振動数 域と,大型車の固有振動数域に着目すると,金港ジャン クションの転倒領域に大型車の振動数比が存在してい るため,転倒しやすい状況であることが言えた.

5. 結論

本研究では、模型実験から数値解析モデルの妥当性 を確認することができた.その中で車両のリフトアッ プに影響を及ぼす3つのパラメーターを特定すること が出来た.数値解析のグラフから橋梁の地震応答の種 類と車両の条件から転倒の可能性について検討するこ とができるようになった.

本研究で着目したリフトアップ現象は高振動数で行 う場合,目視による現象の確認判断が難しいため,接 地圧計などが必要であることがわかった.また,実験設 備の制限で停止時の実験しかできなかったため,実現 象に近づけるために,車両が動作している時の検証を 行う必要がある.

参考文献

(1)丸山喜久,山崎文雄:ドライビングシミュレータを用いた
 地震時車両走行模擬実験,第11回日本地震工学シンポジウム
 論文集,pp. 2283-2288,2002.11

(2) [学] 成田 顕次, シリンゴリンゴ ディオン,藤野 陽
三,西尾 真由子:橋梁走行中の大型トラックの地震時転倒
解析,土木学会第70回年次学術講演会 I-089 2015,8
(3) 安倍正人著:自動車の運動と制御 第2版 東京電機大学

出版局 2014 年 2 月 20 日