橋梁制震に用いる慣性質量ダンパーの振動台実験による制震効果の確認

清水建設	(株)	正会員	○滝本	和志	林	大輔	磯田	和彦	吉武	謙二
			清7	k 建設	(株)		フェロー	-会員	丹	博美
		首都福	高速道路	(株)	Ī	三会員	和日	日新	右高	裕二

1. はじめに

レベル 2 地震に対して損傷を限定的に留め,早期に 機能回復を図ることを目的に,慣性質量ダンパー¹⁾を用 いた同調型制震デバイスを既設橋梁の地震応答制御に 適用した場合の制震効果を,振動台実験²⁾により検討し た.高架橋を想定した 2 質点系モデルの実験模型に, 制震デバイス(慣性質量ダンパー+オイルダンパー) を組み込み,地震時の応答低減効果を検証した.

2. 慣性質量ダンパー

本実験で対象とする慣性質量ダンパーは、錘の回転 慣性を利用することで、錘の質量の数百倍~数千倍の 慣性質量効果を発揮するデバイスである.本実験では、 慣性質量ダンパーとオイルダンパーを組み合わせ、 TMDと同様の同調型制震デバイスとすることで高架橋 の地震応答低減を図る.ダンパーは上段ゴム支承と並 列に取り付け、この支承と橋脚の水平剛性をモデル化 した下段ゴム支承とを考慮して、同調効果を発揮する ように設定した³⁾.実験に使用した慣性質量ダンパーと オイルダンパーの仕様を**表1**に示す.

3. 振動台実験の概要

高架橋のモデルとして、水平力分散支承で支持され た連続高架橋中の1橋脚を想定した¹⁾.橋脚は円形断面 であるため、橋軸方向と橋軸直角方向の構造特性が同 じになるように設定した.**表2**にモデル橋梁および実 験模型の構造特性を示す.本実験では、加速度の相似 率が1となるように、長さと時間の相似率をそれぞれ 1/2.22、1/1.49と設定した.

表 1	実験に使用し	たダンバ	『一の諸元
-----	--------	------	-------

慣性質量	ダンパー	オイルダンパー				
慣性質量	15.0ton	減衰係数	3.0kN/(cm/s)			
ストローク	±120mm	ストローク	±100mm			
最大負担力	100kN	最大負担力	150kN			
全長	1.00m [*]	全長	1.31m*			
重量	180kg ^{**}	重量	210kg**			
※ロードセル,取付け治具を含む						

図1に実験模型の概要を示す.事前に実施したスウ ィープ試験の結果を用いて $1/\sqrt{2}$ 法により減衰定数の推 定を行った結果, h=0.066の値が得られた.その際の固 有振動数は 1.47Hz (0.68sec) であった.当初設定した 固有振動数に比べて実験で得られた固有振動数が高く なった原因として,スウィープ加振時にはゴム支承の せん断ひずみが 50%程度と,ゴム支承の等価剛性を評 価する際のひずみ (175%)よりも小さく,等価剛性よ りも大きな剛性となったことが考えられる.

実験に用いた入力波を表3に、加速度応答スペクト ルを図2に示す. 地震波は相似則に従い時間軸の補正 を行い、非制震の状態で上・下段のゴム支承のせん断 ひずみが200%を超えない大きさに低減して入力した.

4. 実験結果

振動台実験より得られた各応答の最大値を表4に示 す.上段フレームの加速度はフレーム中央に設置した 加速度計の値,支承変位は上下段フレームの相対変位 をフレーム隅角部1か所で計測した値,支承反力は下 段のゴム支承下部に設置した4台の三分力計の合計の 値である.応答はすべてX方向(制震方向)である.

(X,Y方向に共通) 上部工質量		モデル橋梁	実験模型
		526.5ton	48.3ton
	支承剛性	2.45e+04kN/m	4.50e+03kN/m
	水平剛性(橋脚)	1.59e+05kN/m	2.80e+04kN/m
	固有周期	1.09sec	0.74sec
	四七拒動粉	0.0011-	1 2511-

表2 モデル橋梁および実験模型の構造特性

キーワード 慣性質量ダンパー,同調型制震,振動台実験,高架橋,耐震性向上 連絡先 〒135-8530 東京都江東区越中島 3-4-17 清水建設(株)技術研究所

TEL03-3820-6962

-202

入力波 倍率 方向 概要 H24 道示 動解に使用する I-III-2 1.0 Xのみ レベル2地震動の加速度波形4) H24 道示 動解に使用する II-III-2 0.8 XOA レベル2地震動の加速度波形4) X:NS 1995年兵庫県南部地震 Kobe 波 0.8 Y:EW 神戸観測波(JMA KOBE) NS,EW 成分 2011年東北地方太平洋沖地震 X:NS Sendai 波 0.8 Y:EW 仙台観測波(MYG013) NS,EW 成分

表3 入力地震波一覧

制震デバイスを設けた場合は、上部工を模した上段 フレームの応答加速度が入力加速度程度となり、上段 支承変位が大きく低減していることが確認できる.ま た,Sendai 波を除いて下段支承反力も低減している. この傾向は、特に周期が 0.7sec を超える応答が大きい 地震波(I-III-2, II-III-2)で顕著である.この理由を実 験結果から考察するため、振動台テーブルと上段フレ ームで計測した加速度より応答倍率を求めた(図3). 制震の場合、固有振動数周辺での応答倍率が大きく低 減されることが確認できる.制震デバイスを取り付け たことで構造物の共振が抑えられ、上段フレームの加 速度が低減したことで慣性力が小さくなり、支承の変 位だけでなく、橋脚に相当する下段支承の負担力も小 さくなった(表4).

図2より Sendai 波のケースでは固有周期よりも短周 期の成分が支配的であるため、非制震でも加速度が増 幅されず橋脚の負担力も比較的小さく、設計断面を決 定する入力波とはならない.これに制震デバイスを取 り付けると、下段支承の負担力は若干増加するが、支 承変位は大幅に低減する.すなわち、地震波の周期特性 に関わらず、制震デバイスを取り付けることで橋脚の 負担力を増やすことなく、支承変位を大きく低減する ことが可能であることを示唆している.

振動台実験より得られた上段支承変位と下段支承反 力の応答波形の一例を図4に示す.上段支承変位は,

表4 最大応答一覧

		入力	上段	上段支	下段支	
(X 方	(向)	加速度	加速度	承変位	承反力	
		(gal)	(gal)	(mm)	(kN)	
	非制震	606.7	1151.3	136.8	696.1	
I-III-2	制震	671.7	474.4	33.6	350.0	
	低減率	/	0.41	0.25	0.50	
	非制震	440.1	1288.4	138.0	764.2	
II-III-2	制震	459.9	467.6	30.3	325.7	
	低減率	\backslash	0.36	0.22	0.43	
	非制震	690.6	1101.9	117.3	605.6	
Kobe 波	制震	740.9	690.5	35.3	523.0	
	低減率		0.63	0.30	0.86	
Candai	非制震	1069.4	761.5	98.5	443.8	
Sendal 波	制震	1118.3	632.7	29.8	479.7	
1/2	低減率		0.83	0.30	1.08	

最大値だけでなく,継続時間全域に渡って振幅が小さ くなっていることが確認できる.また,下段支承反力 も,大きな振幅が抑制され,橋脚に入力されるエネル ギーが小さくなっていることが確認できる.

5. まとめ

高架橋を想定した 2 層モデルの振動台実験を行い, 慣性質量ダンパーを付加することで以下の効果が得ら れることを確認した.

- (1)構造物の固有振動数付近の応答倍率を大きく低減 させ、共振特性を改善することができる.
- (2) 支承の変位と橋脚の負担力を同時に低減すること ができる.

参考文献

大西孝典ほか:橋梁制震に適用する同調型慣性質量ダンパーの試設計,土木学会第70回年次学術講演会講演概要集,2015.9

2) 和田新ほか:橋梁に用いる制震デバイスの振動台実験による制震効果の確認,土木学会第71回年次学術講演会講演概要 集,2016.9

3) 林大輔ほか:支承復元力と組み合わせた慣性質量ダンパーの橋梁制震への適用,土木学会第71回年次学術講演会講演概 要集,2016.9

4) 日本道路協会:道路橋示方書·同解説 V 耐震設計編, 2012.3

