土木研究所寒地土木研究所	正会員()西	弘明
北海道開発局室蘭開発建設部	正会員	西城俞	 七利雄
土木研究所寒地土木研究所	正会員	寺澤	貴裕

土木研究所寒地土木研究所	正会員	佐藤	孝司
土木研究所寒地土木研究所	正会員	山澤	文雄

1. はじめに

既設橋梁の耐震補強について、個々の部材の補強だけで なく、橋全体での耐震性能を向上させることも合理的な工 法の選択として重要とされているが、その工法の1つとし て変位拘束工法がある.著者らは、桁衝突を想定したパラ ペットおよびウィングの押し抜きせん断力や緩衝材の緩 衝効果を把握する要素実験(衝突実験)をしてきた¹⁾.

本研究では衝突実験で得られた押し抜きせん断バネお よび緩衝ゴムの初期剛性を用い,初期剛性の違いによる下 部構造の応答感度分析を実施した.

2. 解析概要

解析対象には,昭和 55 年道示以前で設計された 2 径間 連続のコンクリート橋を想定している.下部構造につい ては,竪壁高さ 10 m の逆T式橋台(高さ 2.2 m,厚さ 0.5 mのパラペット)および躯体高 10 m の壁式橋脚とした. 解析ケースに考慮した橋台ウィング形式(図-2)の各部 位耐力および橋台の破壊形態を表-1 に示す.ここで,橋 台の破壊形態は各部位の曲げ,せん断,押し抜き耐力を 比較し,耐力が最小となるものを選定した.

図-1 に示す橋梁全体系の非線形解析モデルにおいて, 破壊形態を想定した部位以外は線形モデルとした.考慮 した水平抵抗は,橋台パラペットおよび橋台背面土の水 平抵抗,桁の衝突である.橋台パラペットバネは,曲げ 破壊型の場合には剛性低下トリリニア型 M-φモデルを, せん断破壊型の場合には押し抜き抵抗バネとして考慮し た.初期剛性は,既往解析²⁾で用いた値および実験結果 に基づく値の2種類とした.本解析に使用した押し抜き せん断バネの諸元を表-3に示す.緩衝材を設置した場合 の桁衝突バネのバネ値は,以下の3種類の緩衝ゴム剛性 とした.厚さ50mmのゴムの圧縮力-圧縮量の関係とし た場合(静的剛性),衝突実験結果よりゴム剛性の上限お よび下限(20 kN/mm および 60 kN/mm)とした場合であ る(図-3).

図-1 解析モデル

表-1 橋台破壊形態

14 / ·	堅壁		パラペット			破壊形態	
橋 ウィング 形式	曲げ 耐力 (kN)	せん断 耐力 (kN)	押し抜 き 耐力 [*] (kN)	曲げ 耐力 (kN)	せん断 耐力 (kN)	押し抜 き 耐力 ^{*1} (kN)	_
(a)ウィング無 し	2143	15357	_	1360	2501	-	パラペット 曲げ
(b)パラレル	2143	15357	-	41905	-	9350	竪壁曲げ
(c)二辺固定 +パラレル①	4724	_	18700	41905	_	9350	竪壁曲げ
(d)二辺固定 +パラレル②	9410	_	20400	41905	-	9350	パラペット 押し抜き
(e)二辺固定	14680		22100	41905		9350	パラペット 押し抜き
※1 押し抜き†	トん断耐	カは道示	における	コンクリ	ートのF	E縮強度(の影響を

51 押し抜きせん断耐力は道示におけるコンクリートの圧縮強度の影響を 考慮した許容押抜きせん断応力度(τ = 0.85 N/mm²)と抵抗面積との積

表-2 解析条件

項目	条件
設計方向	橋軸方向
積分手法	Newmark β 法(β =0.25)
解析時間間隔	1/10000 秒
減衰考慮方法	Rayleigh 減衰
固有周期計算手法	サブスペース法
使用プログラム	TDAP III
基礎地盤条件	Ⅱ種地盤
衝突位置	桁中心
入力地震波	タイプ II - II -1

表-3 押し抜きせん断バネ諸元

	許容押し抜き	押し抜き	バネモデル
	せん断耐力	せん断耐力	剛性
	(N/mm ²)	(kN)	(kN/mm)
既往解析設定	0.85	9,350	7.0E+04
実験結果設定	4.00	44,000	1.02E+03

キーワード 桁衝突,衝突実験,橋台,押し抜きせん断破壊バネ,緩衝ゴム,初期剛性
 連絡先 〒062-8602 札幌市豊平区平岸1条3丁目1-34 土木研究所 寒地土木研究所 TEL011-841-1698

表-2 に示す解析条件で,道路橋示方書V耐震設計編のタイプⅡ地 震動を入力波とした時刻歴応答解析を実施した.押し抜きせん断バ ネ剛性の影響を検討するケースでは,(1)支間長を 30 m で一定とし, 遊間量を 20,40,70 と変化させた場合,(2)遊間量を 40 mm で一定 とし,支間長を 30,50 m と変化させた場合とした.緩衝ゴム剛性 の影響を検討するケースでは,支間長を 30 m,遊間量を 70 mm で

一定とし、剛性は3種類とした.

3. 解析結果

本検討では下部工応答として橋脚, 堅壁およびパラペット天端の 最大変位に着目した.橋脚と堅壁の応答に関しては,許容変位に対 する比で整理している.

(1) 押し抜きせん断バネ剛性の影響

橋台ウィング形式(d),(e)において,遊間量・支間長を変えた場合 の橋脚・橋台応答に及ぼす押し抜きせん断バネ剛性の影響を図-4に 示す.実験結果より設定した押し抜きせん断バネ剛性を採用するこ とで,竪壁の曲げ耐力が最も小さくなり,破壊形態は竪壁曲げ破壊 に誘導される.しかし,竪壁照査結果は1.0以下であり,竪壁は降 伏まで至っていない.橋脚,橋台応答については,いずれのケース においても既往のせん断バネ剛性を採用した場合と比較して低減 されている.また,本検討範囲内においては,支間が大きいほど, 遊間が大きいほど橋脚,橋台応答は大きくなる傾向にある.

(2) 緩衝ゴム剛性の影響

破壊形態が異なる橋台ウィング形式(a), (b), (d)におけ る橋脚・橋台応答に及ぼす緩衝ゴム剛性の影響を図-5 に 示す.橋台形式の違いによる下部構造応答に違いは見られ るものの,緩衝ゴム剛性の違いによる下部構造応答は大き な差は見られない.本検討条件の範囲内では,緩衝ゴム剛 性の橋脚・橋台応答への影響は少ないといえる.

4. まとめ

本研究では地震時の桁衝突を想定し,要素実験(衝突実 験)より得られた部材の抵抗特性等を用いた下部構造応答 感度分析を実施した.今後は,本実験結果を反映した解析 モデルにおいて,非線形バネを破壊形態によらずに各部位 に設定した場合の解析を行い,下部構造応答感度分析を行 う予定である.

参考文献

- 西城能利雄,西 弘明,田崎賢治,佐藤孝司,具志一 也:桁衝突に伴う橋台抵抗特性の実験的検討,土木学 会北海道支部論文報告集, Vol.72, 2016.1
- 西城能利雄,岡田慎哉,西 弘明:地震時の桁衝突に 伴う橋梁下部工応答特性の解析的検討,土木学会年次 学術講演会講演概要集,Vol.70, pp.225-226, 2015.9

図-3 解析モデルの緩衝ゴム剛性

