動的平板載荷実験に基づく地盤最表層の S 波インピーダンス測定法の開発

京都大学 学生員 〇江口 拓生 京都大学 正会員 後藤 浩之 非会員 立命館大学 川方 裕則 京都大学 非会員 土井 一生 三井住友建設(株) 正会員 高橋 直樹 正会員 京都大学 澤田 純男

1. はじめに

地盤の S 波インピーダンスは S 波速度 Vs と密度 ρ の積で表され、地盤特性を表現するパラメータの 1 つである。しかし、手軽で直接的な S 波インピーダンス測定法が存在しないのが現状である。Goto et al. (2015) は、平板を用いて手軽に地盤最表層の S 波インピーダンスを直接測定する方法を提案し、数値実験によって検証した。本研究は、既往の研究 (Goto et al., 2015) による S 波インピーダンスの測定法を検証する実験を行い、データの再現性を向上させるため新たに改良法を提案する。

2. 実験の概要

既往の研究では、地表に置かれた平板を加振した際の、 平板の加振速度と平板に働く地盤反力の間の関係を S 波インピーダンス測定に利用している。本研究では図1の実験システムを用いて、平板に取り付けた加速度計と平板と加振器の間のロードセルからデータを得ることにより、加振速度と地盤反力を求める。

表 1 のように計 10 種類の地盤を、土槽内に作成して実験を行った. 地盤の S 波速度と密度は独立に測定し、その積を実際の S 波インピーダンスと考える. 本研究では、直径 90mm と 120mm の 2 種類の平板を用いている.

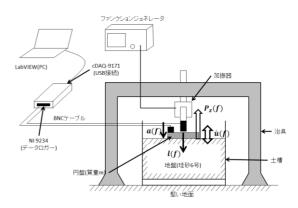


図1 実験システムの全体図

3. 既往の測定法による結果

既往の研究では加振周波数を徐々に変え、周波数毎の加振速度と垂直反力の位相差と振幅比を求めている。 周波数を上げると位相差が減少し、位相差が 0° になる周波数が現れる。その周波数における振幅比が、S波インピーダンス ρ Vsに比例することが数値実験によって確かめられている(図 2).

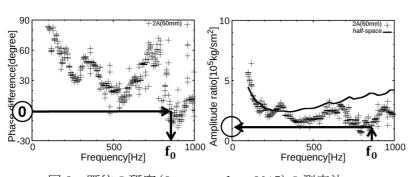


図 2 既往の研究(Goto et al., 2015)の測定法

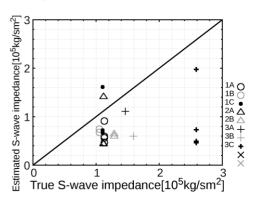


図3 既往の測定法による測定結果

キーワード S波インピーダンス測定,土槽,データ精度,周波数区間

連絡先 〒611-0011 京都府宇治市五ケ庄 京都大学防災研究所耐震基礎研究室 TEL0774-38-3348

既往の測定法による S 波インピーダンス測定結果を図 3 に示す.横軸が実際の地盤の S 波インピーダンス,縦軸が測定値を表す.全体的に過小評価であり,かつ地盤番号 3 と 4 のほとんどは位相差が 0 になる周波数を見つけることができないため,評価できない.正しく S 波インピーダンスを測定できない原因は,主に以下の 2 つが考えられる.1 つ目は反射波の影響である.実験を行う土槽が半無限地盤を表現できるほど大きくないため,土槽の側面で波が反射し,特定の周波数で地盤が共振する影響が考えられる.2 つ目は,計測ノイズの影響である.本研究では一定のサンプルレートでデータを取得しているため,低周波数側では振幅,高周波数 側では位相の精度が相対的に悪い可能性が考えられる.低周波数側では位相,高周波数側では振幅のデータが相対的に精度が高いと考えられるため,これを利用した改良法を提案する.

4. 改良法による結果

まず、実験の結果と、実験と同じ物性値の半無限均質地盤数値解析の結果の、2つの位相差のグラフがよく一致する位相差の範囲を求める。全実験のうち34%でこの操作を行うと、位相差が32°から50°の区間でよく一致することが分かった。続いてそれぞれの数値解析の結果について、この位相差の範囲に対応する周波数の中央値f'を求め、f'を基準として定められる周波数区間の振幅比の平均をとる。この周波数区間を様々に変え、振幅比の平均から得られるS波インピーダンス測定値が、実際の地盤のS波インピーダンスと一致する最適な周波数区間を求める。このとき、周波数区間を1.40f'から2.94f'までと設定すると、よくS波インピーダンスを推定できる。以上の方法を実験データに適用してS波インピーダンスを推定する過程を図4に示す。

改良法によって測定された S 波インピーダンスを図 5 に示す. 実験 A と B のすべての結果において推定精度が改善された上に、既往の測定法で評価できなかった地盤番号 3 と 4 についても適用できている. しかし、実験 C の結果では推定精度が改善されておらず、また全体的に S 波インピーダンスを十分に正しく測定できてい

るとは言えない. そのため, さらに改良を重ねる必要がある.

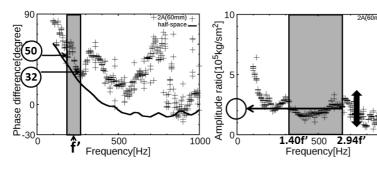


図4 改良された測定法

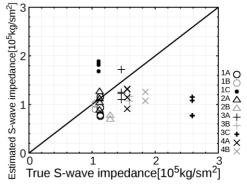


図5 改良法による測定結果

表 1 実験地盤の物性値

参考文献

Goto, H., Tanaka, N., Sawada, S., Inatani, H.: S-wave impedance measurements of the uppermost material in surface ground layers: Vertical load excitation on a circular disk, Soils and Foundations, 55, pp. 1282-1292, 2015.

地盤 番号		状態	層厚[mm]	S波速度 [m/s]	密度 [kg/m³]	含水比 [%]
1	Α	飽和	210.4	59.2	1910	29.2
	В		182.4	54.9	1920	28.4
	С		250.0	56.7	1950	26.0
2	Α	飽和	92.8	N/A	1890	30.3
	В		89.5	67.1	1920	28.4
3	Α	不飽和	211.4	83.3	1760	20.2
	В		181.9	84.7	1880	25.5
	С		250.0	167	1550	0.0
4	Α	不飽和	91.5	N/A	1870	26.8
	В	,	87.9	96.2	1920	25.8