表面粗さが接着強度に与える影響に関する実験的検討

名古屋大学大学院	正会員	〇北根	安雄
名古屋大学大学院		吉村	浩寿
名古屋大学	学生会員	上山	裕太
名古屋大学大学院	フェロー会員	伊藤	義人

1. 目的

近年,腐食した鋼構造物の補修方法として,FRP または鋼板を接着することにより断面欠損部の性能回復を行う 方法が開発されてきている¹⁾.通常,接着補修を行う際には,健全部に定着部を設けることで,接着強度を確保す る.しかし,腐食部の近傍に全く腐食していない健全部は少なく,多少は腐食しているが,表面処理によりさびを 除去した上で,定着部としている場合も想定される.本研究では,腐食により表面に凹凸がある定着部を対象とし, 凹凸の有無またはその程度によって,接着強度がどのように変化するのかを,小型供試体を用いた圧縮せん断試験 により明らかにすることを目的とする.

2. 実験方法

本研究では、人工的に作成した表面粗さをもつ鋼板の 接着せん断強度を測定するため、図-1 に示す長さ 110mm, 幅 100mm、厚さ 12mm の SS400 鋼板を 2 枚使用し、その うち 1 枚に表面粗さを 100mm×100mm の領域で与え、 100mm×100mm の領域で、2 枚の鋼板を接着した供試体 を作成した.表面粗さとして、せん断方向とその直角方向 に正弦波による凹凸を考え、表-1 に示した 9 種類のケー スに対して各 3 体の供試体を準備し、合計で 27 体の粗さ 供試体を製作した.ここで、供試体に用いた粗さパラメー タの範囲は、19.5 年間海洋環境暴露アングル材、19 年間

図-1 供試体寸法と粗さ表面の例

海洋環境暴露鋼管杭,168 日間バブリング腐食試験を行った裸鋼材,清宮ら²⁾によって計測された鋼管杭の腐食デ ータを参考に決定した.着目する粗さパラメータとして,波長λ,最大深さSz,算術平均高さSa,二乗平均平方根 高さSq,界面展開面積率Sdr,二乗平均平方根傾斜 R∠q を取り上げた.供試体の粗さ表面は,表-1 に示した波長 んおよびSz/2 を振幅とした2方向の正弦波とした.また,比較のため,粗さをもたない鋼板同士を接着した供試体

名称	波長λ(mm)	平均減肉量(mm)	Sz(mm)	Sa(mm)	Sq(mm)	Sdr(%)	R∆q
R1010	- 10	0.5	1.0	0.18	0.238	2.41	0.156
R1016		0.8	1.6	0.289	0.381	6.04	0.250
R2032	- 20	1.6	3.2	0.579	0.762	6.04	0.250
R2053		2.65	5.3	0.96	1.27	15.8	0.416
R3332	- 33.3	1.6	3.2	0.58	0.76	2.27	0.150
R3353		2.65	5.3	0.96	1.27	6.01	0.250
R4032	40	1.6	3.2	0.579	0.762	1.55	0.125
R4053		2.65	5.3	0.96	1.27	4.22	0.209
R4064		3.2	6.4	1.157	1.524	6.04	0.250

表-1 製作した粗さ表面一覧表

キーワード 接着,表面粗さ,腐食,鋼構造

連絡先 〒464-8603 名古屋市千種区不老町 名古屋大学大学院 社会基盤工学専攻 TEL052-789-2736

(6 体) も製作した.表面粗さの加工は,粗さの3次元表面データを 作成した後に,3次元座標データによる表面加工が可能なNCフライ ス盤を使用した.

供試体の接着には、コニシ(株)製の鋼構造物用耐熱型エポキシ樹 脂系接着剤 E258RW を用いた.この接着剤は、当て板補修などが主 な用途となっており、腐食部の不陸調整にパテ材を別途使用する必 要がない接着剤である.引張強度および引張せん断強度のカタログ 値は、それぞれ 34MPa と 28MPa である.表面粗さのある鋼板の凹凸 の最高部と粗さのない鋼板との間が 1mm となるよう接着層を確保 し、7日間以上の養生を行った上、JIS K6852 を参考にした圧縮せん 断強度試験(図-2 参照)を行った.

3. 結果と考察

圧縮せん断試験結果のまとめを表-2 に示す. 粗さのない 供試体の圧縮せん断強度の平均値は 26.9MPa,標準偏差は 4.3%であった. 粗さのない供試体の破壊モードはすべて凝 集破壊であった. 表面粗さをもつ供試体では,接着破壊と なった供試体が多く見られ,接着破壊は表面粗さのない鋼 板と接着剤との界面で発生していた. 今回検討した表面粗 さでは,R4064 が最もせん断強度の低下が大きく,表面粗 さのない供試体より 17%低下が見られた.

表面粗さの影響として,粗さパラメータのうち波長んと 最大減肉量(最大深さ)Szに着目して評価すると,最大減 肉量Szが同じであれば,波長んによる影響がほとんどな く,また,波長んが同じ場合,最大減肉量Szが大きくなる につれ,圧縮せん断強度は小さくなった(図-3参照).波長 が40mmの供試体では,Szが3.2mmから6.4mmになるこ とで圧縮せん断強度が約13%減少した.

4. まとめ

表面粗さをもつ鋼板の圧縮せん断試験を行った結果,今 回考慮した正弦波による凹凸を持つ場合では,最大減肉量 が圧縮せん断強度に与える影響が大きいことが明らかとな った.また,粗さをもつ供試体では接着破壊がみられたが, 今回検討した粗さの範囲では,凝集破壊に比べて極端に低い 接着せん断強度とはならないことがわかった.

参考文献

- 土木学会:腐食した鋼構造物の性能回復事例と性能回復 設計法,鋼構造シリーズ23,2014.
- 清宮理,千葉照男,横田弘,阿部正美:桟橋に用いられた鋼管杭の腐食状況と残存強度,港湾技研資料, No.593, 1987.

謝辞:本研究の遂行にあたり、コニシ株式会社の堀井久一氏 に貴重な助言および情報提供をいただきました.

表-2 圧縮せん断試験結果

種類	供試体	破壞	強度	平均	変動
	番号	モード	(MPa)	(MPa)	係数
	R1010-1	凝集破壊	26.2		
R1010	R1010-2	凝集破壊	25.1	26.3	0.046
	R1010-3	凝集破壊	27.5		
	R1016-1	接着破壊	22.0		
R1016	R1016-2	凝集破壊	27.0	25.2	0.11
	R1016-3	接着破壊	26.7		
R2032	R2032-1	接着破壊	23.7		
	R2032-2	接着破壊	23.6	24.0	0.023
	R2032-3	接着破壊	24.6		
	R2053-1	接着破壊	22.3	23.5	0.070
R2053	R2053-2	接着破壊	25.4		
	R2053-3	接着破壊	22.9		
	R3332-1	接着破壊	26.1		
R3332	R3332-2	接着破壊	27.2	25.9	0.054
	R3332-3	接着破壊	24.4		
R3353	R3353-1	接着破壊	22.8	24.5	0.064
	R3353-2	凝集破壊	24.9		
	R3353-3	接着破壊	25.9		
-	R4032-1	凝集破壊	25.2		
R4032	R4032-2	凝集破壊	25.6	25.6	0.018
	R4032-3	凝集破壊	26.1		
R4053	R4053-1	接着破壊	24.2		
	R4053-2	接着破壊	21.6	23.4	0.068
	R4053-3	接着破壊	24.5		
R4064	R4064-1	接着破壊	21.5		
	R4064-2	接着破壊	21.9	22.4	0.055
	R4064-3	接着破壊	23.8		

図-3 最大減肉量と圧縮せん断強度との関係