# 天然ゴム製造工程廃水中の窒素除去手法の検討

長岡技科大院·工 学生会員 ○渡利 高大, 武笠 巨尭, 中原 望, 幡本 将史, 福田 雅夫, 山口 隆司 呉高専 正会員 谷川 大輔, 国環研 正会員 珠坪 一晃 Hanoi University of Science and Technology 非会員 Nguyen Thi Thanh, Nguyen Lan Huong,

### 1. はじめに

天然ゴムは、自動車用のタイヤやゴム手袋など幅 広く使用されている.パラゴムノキから採取した天 然ラテックスには腐敗を防ぐため、アンモニアが添 加されるが、それが天然ゴム製造工程廃水に多く残 存する.これまで、本廃水の処理には、嫌気性ラグ ーンと好気性ラグーンを複合させた処理システムな どが導入されているが、全窒素(Total Nitrogen: Tn)や浮遊物などの排水基準を満たしていない、そ のため、アンモニアをはじめとした窒素成分の効率 的な除去手法の開発が求められている.本研究グル ープでは、これまで、天然ゴム製造工程廃水に対し て、バッフルドリアクター(baffled reactor, BR)と メタンガスの回収が可能である上向流嫌気性汚泥床

(upflow anaerobic sludge blanket, UASB) と下 降流懸垂型スポンジ (downflow hanging sponge, DHS) を組み合わせた処理システムを開発し,連続 処理実験を行った<sup>1)</sup>.その結果,良好な有機物除去 を達成したが、依然として,高濃度の窒素が残存して いた.そこで,本研究では,DHS での硝化反応を確 認したのち,DHS 処理水を UASB の流入口に返送す ることによって脱窒を試みた.また,高い窒素除去 性能が確認された DHS のスポンジ保持汚泥に対し て,16S rRNA 遺伝子に基づいた微生物群集構造解 析を行った.

#### 2. 実験方法

ラボスケール BR (全容積 43.7 L), UASB (全容積 9.0 L), DHS (有効容積 6.4 L) は, Hanoi University of Science and Technology に設置し連続処理実験を 行った (Fig.1). Phase 1 では, DHS における硝化性 能を評価した. Phase 2 以降は, UASB での脱窒を目 的に, DHS 処理水を UASB 入口に返送した (循環 比:1). 供試廃水は, Phase 1 から Phase 2 までは, ベ トナム・タインホア省の Vietnamese Standard

UASB eff. Distributor 1 Influent Port1 Gas mete Port2 Port3 Wastewater tank **DHS eff** Pre-treated water tank BR UASB reactor DHS (Ambient) (35°C) reactor

Nguyen Minh Tan, Huynh Trung Hai



Rubber (SVR) を製造する工場から採取した廃水, Phase 3 以降では天然ゴムラテックスに酢酸を添加 し、ゴム分を除去した模擬廃水 (ラテックス廃水) を用いた. Phase 4 ではシステム全体における最大許 容窒素負荷量の推定, Phase 5 では,実天然ゴム製造 工程廃水と同程度の窒素濃度で運転を行った.

水質分析試料の採水箇所は, 廃水タンク, BR eff., UASB eff., DHS eff.とした. 分析項目は COD, 硝 酸態窒素, 亜硝酸態窒素, アンモニア態窒素とした. 硝酸態窒素, 亜硝酸態窒素, アンモニア態窒素はイ オンクロマトグラフ (LC-20AD, Shimadzu) を用い て測定した.汚泥サンプルは、運転開始より92日目と 238日目にDHSのサンプリングポート1~3より採取し, DNA 抽出を行った. 抽出 DNA を鋳型として, 原核生 物の 16S rRNA 遺伝子を対象とした Univ515F-Univ806R プライマーセットを用いて PCR 反応を行った. PCR 増幅産物は精製後, 次世代シーク エンサーMiSeq (Ilumina) により多様性を解析した. 16S rRNA 遺伝子のシークエンシングは Caporaso et al.の方法に従った 2). 得られた遺伝子配列情報は, QIIME ソフトウェアを用いて解析した. また, NCBI の BLAST (http://www.ncbi.nlm.nih.gov/) により既知 種から相同性の高い種を検索した.

連絡先 〒940-2188 新潟県長岡市上富岡町 1603-1 長岡技術科学大学 水圈土壤環境制御工学研究室 Tel 0258-47-1611

キーワード DHS, 窒素除去, 微生物群集構造

#### -007

# 3. 実験結果

Fig.2 に運転開始 45 日目 (Phase 1), 238 日目 (Phase 5) における DHS 流下方向の水質プロファイ ル結果を示す. 処理水循環を行わなかった Phase 1 におけるシステム全体の TN の除去率は,44 ± 36% で、最終処理水は、81±13 mg-N/L であった.水質プ ロファイルの結果,硝化反応は主に DHS 上·中部で 生じていた.これまでの研究では、従属栄養細菌と 硝化菌の間で溶存酸素の競合が起きるため, DHS 上 部で有機物分解,下部において硝化反応が起きてい た.しかしながら、本研究では、大部分の有機物除 去が既に前段 BR と UASB で行われていたため, 硝 化反応は主に上・中部で起きていたと考えられる. ま た、DHS 下部において、硝酸態窒素と亜硝酸態窒素 の濃度が低下し、また、全窒素濃度も低下している ため、硝化反応とともに脱窒反応も起きていた. DHS 処理水を UASB の流入口に循環した Phase 2 では、システム全体における TN 除去率は、56±16% に上昇した. Phase 3 から Phase 5 では、より窒素濃 度の高いラテックス廃水を供給した. Phase 4 では, 流入 TN 濃度を 1.335 mg-N/L まで上昇させたとこ ろ, TN 除去率は26%まで低下した. Phase 5 では, 実 際の天然ゴム工場と同程度の TN 濃度(400 mg-N/L) に設定した. Phase 5 における, TN 除去率 は 65 ± 16%で、最終処理水の TN 濃度は、190 ± 165 mg-N/L であった. DHS 内では、アンモニアがほぼ 完全に硝酸態窒素まで酸化された.しかしながら, 酸化された硝酸態窒素が,残存している一方で, DHS 処理水の COD は、13.0 ± 12.5 mg-COD/L まで除去 されており, 有機物不足によって脱窒まで反応が進 行しなかった.以上の結果より、ベトナムにおける 産業廃水排出基準の TN 項目を満たす処理水を得る にはさらなる運転条件の検討が必要であることがわ かった.

Fig. 3 に運転92日目 (Phase 1), 238日目 (Phase 5) における DHS 汚泥の門レベルでの微生物群集構 造を示す. DHS 汚泥では, Proteobacteria, Gemmatimonadetes, Firmicutes, Chloroflexi, Bacteroidetes, Euryachaeota が多く検出された. 運 転 92 日目では,硝化菌では, Nitrospira sp.と Nitrosomonas sp. がそれぞれ, 1.1%から 1.8%, 0.1%から 0.5%,検出された. 一方,脱窒菌である



Fig. 3 運転 92 日目と 238 日目における DHS 内の門レベル での微生物群集構造

Comomonas sp. やメタン生成古細菌である Methanosphaera sp.が DHS 上部で多く検出された.運転 238 日目において, 硝化菌である Nitrospira sp., Nitrosomonas sp., Nitrobacter sp.,がリアクター下部で 多く検出された. 一方, 脱窒菌では Comamonas sp. と Thauera sp.が, 上部・下部で共通して 1.0%から 1.4% と 0.1%から 0.6%検出された.

## 4. まとめ

BR-UASB-DHS システムにおいて,処理水循環に よって,TN 除去率が 65±16%に向上した.しかしな がら,有機物不足によって脱窒にまで反応が至らず, 硝酸態窒素が残存した.DHS 汚泥の微生物群集構造 解析の結果,循環前後において,硝化菌と脱窒菌の 分布に違いが見られた.

# 参考文献

1) Watari et al. (2014), AGRO2014, p.66-73

2) Caporaso *et al.* (2012) ISME J. 6, pp.1621-1624. 謝辞

本研究は, JST/JICA ESCANBER PJ によって遂行いたしました.