チャンバー内攪拌シミュレーションへの MPS 解析の適用性

清水建設	(株)	土木技	(術本部		正会員	高梨	和光 C)小瀧伸也
清水建設	(株)	技術研	F究所		正会員	杉山	博一	
清水建設	(株)	外環大	、泉シール	ド作業所	正会員	原	忠	前田俊宏
東日本高道	東道路	6 (株)	関東支社	:東京外環工	事事務所	佐々	木博明	塚田裕史

1. はじめに

土Eシールドのチャンバー内掘削土の塑性流動性状態を 解析で検討する場合,個別要素法(DEM)や有限体積法 (FVM)が試みられてきた.本研究では,実際の泥土を攪拌 した実験¹⁾の再現解析を粒子法^{2),3),4)} (Moving Particle Semi-implicit Method; 以降 MPS 法と記す)により行い,解 析と実験の土圧変動を比較し,チャンバー内攪拌シミュ レーションへの MPS 法の適用性を検討した.

2. 解析モデルと解析条件

解析にはプロメテック・ソフトウェア(株)の MPS 法"Particleworks[®]"を用いた.図-1に実験で用いた攪拌実験 装置を再現した解析モデルを示す.土槽の内径は66cm,高 さは25cmで,土槽中央部には回転体があり,半径20cmの 位置に攪拌棒が設置され,攪拌棒直下と,それを中心に半 径方向に5cmずつ離して計4つの土圧計を設置した.

表-1 に解析ケースと地盤パラメータ,表-2 に解析条件を 示す.地盤をビンガム流体としてモデル化し,降伏値と塑 性粘度については,実験で得られた値を設定した.ビンガ ム流体には流動時では粘塑性流体,不動時は高粘性流体と して扱う bi-viscosity モデルを採用した.土槽と回転アーム と攪拌棒はポリゴン壁でモデル化し,回転アームの回転軸 に回転速度を設定した.なお,実験では攪拌棒の離隔や回 転速度を数種類変えたが,解析では離隔を 2cm (固定),回 転速度を 4rpm および 8rpm と設定した.

3. 解析結果と実験結果の比較

表-3 に解析と実験の土圧変動の比較を示す. 攪拌棒の回 転速度が 8rpmのケースについては, C-c15のみ示しており, A-s20 と B-c30 については割愛した. また, 攪拌棒の回転 速度が 4rpm のケースの土圧計-2 の解析については, 解析 結果も実験と同じ 0.1 秒ごとにプロットし, 再現時間を 30 秒で打ち切った.

図-1 解析モデル

表-1 解析用地盤パラメータ

ケース	降伏値 (Pa)	塑性粘度 (Pa・s)	対応する 実験ケース
A-s20	500	5	S20
B-c30	1000	10	C30
C-c15	1500	15	C15

表-2 解析条件

計算方法	陰解法		
流体モデル	ビンガム流体		
構造エジル	ポリゴン壁		
伸迫て / //	(固定,移動)		
粒子サイズr	1 (cm)		
粒子数 n	71894 (個)		
時間刻み Δt	0.0005 (s)		
五 祖時間、	60 (s)		
丹苑时间し	(一部 30 (s))		
重力加速度 g	9.8 (m/s ²)		
密度 ρ	2000 (kg/m ³)		
降伏値 τ	500~1500 (Pa)		
塑性粘度η	5~15 (Pa·s)		
降伏点パラメータ p _t	0.0001		
回転速度(撹拌棒)	4~8 (rpm)		

キーワード 土圧シールド, 塑性流動性, 攪拌, MPS 解析 連絡先 〒104-8370 東京都中央区京橋 2-16-1 清水建設(株)土木技術本部 TEL: 03-3561-3892

土圧変動の結果を比較したところ,いずれのケースも土 圧変動の幅が概ね一致しており,0.1 秒ごとにプロットする ことにより細かな土圧変動も再現できることが確認できた. 4. MPS 法による攪拌状況の可視化

図-2,3 に MPS 法による圧力分布(単位: Pa)の解析結果 (ケース B-c30,4rpm)を示す. 攪拌棒周辺だけでなく,土槽 の底面や側面にも圧力が広がる攪拌時の挙動が確認できた.

5. まとめ

- 1)実験での攪拌条件と泥土の粘性特性を入力値とした再現 解析を実施し、土槽の底面に作用する土圧変動を実験値 と比較したところ、ほぼ再現していることが確認できた.
- 2)MPS 法による圧力分布を 3 次元的に可視化することで, 圧力が攪拌棒周辺だけでなく, 土槽の底面や側面にも広 がり, 攪拌時の挙動を表現できることが確認できた.
- 3)今後,物性の寸法効果等を検討し,実物大のチャンバー 内掘削土の塑性流動性状態を評価する手法として,本 MPS法を適用していきたいと考える.

参考文献:

- 1)中谷篤史他:攪拌条件を考慮したチャンバー内塑性流動性評 価方法(その1),年次講演会,土木学会,2015(投稿中) 2)越塚誠一:粒子法,丸善出版,2005
- 3)Koshizuka.S and Y.Oka(1966):Moving particle semi-implicit method for fragmentation of incompressible fluid, J. Nucl. Sci. Engng. Vol 123,pp421-434
- 4)高梨和光他,:多段安定化 MPS 法による津波波力に関する研 究,海岸工学論文集,Vol54,pp251-255,2007

図-2 圧力分布状況(35秒後)

図-3 底面における圧力分布(10秒後)