有機繊維を混入した超高強度繊維補強コンクリートにおける疲労特性

立命館大学大学院	学生会員	〇小川	真生
立命館大学大学院	学生会員	志村	彩
立命館大学	フェロー	岡本	享久

1.はじめに

超高強度繊維補強コンクリート(以下,UFC)は混入 した繊維がひび割れ面を架橋することで引張力を抑制す る特徴がある.近年,有機繊維を土木構造物に有効活用 することが検討されているが,疲労特性に関する研究事 例はわずかである.そこで,本研究では,異なる3種類 の有機繊維を混入したUFC部材の耐疲労性能に関する基 礎的なデータの構築に加え,S-N線式を算出し,土木構 造物への適用を検討する際に必要となる疲労特性を把握 することを目的とした.

2. 実験概要

圧縮試験,静的曲げ試験および引張軟化曲線の推定に より引張強度を算出し,各 UFC の物性を把握した後,動 的曲げ試験(以下,疲労試験)を行った.

2.1 使用材料

繊維の概要を表-1 に示す. 混入繊維はポリビニルア ルコール(以下, PVA), ポリプロピレン(以下, PP)お よびアラミド(以下, AR)の3種類とした. 供試体への 繊維の混入率(vol.%)は,ひび割れ後の最大引張応力が 同程度となるように,それぞれ3.0,2.0,0.8とした.ま た,PVAは実用化されている配合に基づいて混入率を決 定した. PVA および PP, AR の配合表を表-2 および表 -3 に示す.

2.2 供試体

圧縮試験には φ100×200mm の円柱供試体,静的曲げ試 験および疲労試験には 100×100×400mm の角柱供試体を 用いた.角柱供試体は JCI-S-002-2003 に準じて,図-1 に 示すように,供試体底部の中央に高さ 30mm のノッチを 施した.また,ひび割れ肩口開口変位(以下,CMOD) の測定には,容量 5mm のクリップ型変位計を用いた.

3. 試験結果および考察

3.1 圧縮試験

平均圧縮強度は PVA: 189.0N/mm², PP: 166.6N/mm², AR: 172.7N/mm²となった. 圧縮強度には繊維の混入量や

表-1 繊維の概要

繊維の種類	PVA	РР	AR
長さ(mm)	15	30	30
直径(mm)	0.3	1.3	0.5
アスペクト比	50	23	60
密度(g/cm ³)	1.30	0.91	1.39
引張強度(N/mm ²)	975	500	1716
弹性係数(kN/mm ²)	26	10	42
形状	・円形断面 ・表面加工なし	・矩形断面 ・表面エンボス加工	・円形断面 ・マルチフィラメント (集束型)

表-2 示方配合(PVA)

単位量(kg/m ³)				
水	UFC標準 配合紛体	高性能 減水剤	PVA	V _f (vol.%)
178	2231	32	39	3.0

表-3 示方配合 (PP および AR)

図-1 供試体寸法および載荷方法

図-2 引張軟化曲線

マトリクスの緻密さが影響していると考えられた.

3.2 静的曲げ試験

PVA, PP, AR の供試体をそれぞれ4体ずつ静的曲げ試 験を行った.試験結果は得られた最大荷重を,切欠きを 除いた高さ70mm の断面の断面係数で除して見かけ上の 曲げ強度として評価した¹⁾.その結果,静的曲げ強度の

```
キーワード 超高強度繊維補強コンクリート,有機繊維,短繊維,疲労,S·N線式
連絡先 〒525-8577 滋賀県草津市野路東1-1-1 立命館大学トリシア4階 環境材料研究室 TEL077-561-3374
```


4 体平均値 f_mは PVA: 12.9N/mm², PP: 14.8N/mm², AR: 16.3N/mm²となった. 静的曲げ強度には, 繊維の弾性係数, 混入量および長さが関係していると考えられた.

3.3 引張軟化曲線の推定

3.2より得られた荷重-CMODの関係から逆解析を行い, 引張軟化曲線を推定した.マトリクスの軟化開始点とな る引張強度は PVA: 17.0N/mm², PP: 13.4N/mm², AR: 13.5N/mm², となった.また,ひび割れ発生後における最 大引張応力はいずれも 4.7~4.9N/mm²であり,同程度とな った. PVA は PP と AR よりも繊維長が短いために,ひび 割れ面において繊維の引抜け,破断が速く進行し,引張 応力の低下も速く進行したと考えられる.

3.4 動的曲げ試験

PVA, PP および AR 供試体の上限応力 σ_{max}は静的曲げ 強度の平均値 fmの 85%, 70%, 55%, 40%の 4 水準, 下 限応力 σ_{\min} は全て f_m の 10%として疲労試験を行った. そ の際に、供試体が破断しない場合の上限サイクル数を200 万回とした. 疲労試験の結果を縦軸に応力比 S=(σ_{max}- σ_{\min})/($f_m - \sigma_{\min}$), 横軸に疲労寿命をとった S-N 図として図 -3 に示す. また, 繊維別に定めた S-N 線図を図-4, S-N 線式とその範囲を表-4 に示す.表-4 中の S-N 線式は, 試験データが式を下回る確率が 5%以下となるように決 めた²⁾. ひび割れ後の最大引張応力は同程度であったが, 疲労試験においては繊維ごとに疲労強度が異なっていた. PVA および PP 供試体は応力比 S=0.50, AR 供試体は S=0.33 のときに 200 万回強度に達した. 図-4 の S-N 線 図から PP の疲労強度が最も高いことがわかり,静的曲げ 強度や引張強度から疲労強度の大小を判断することはで きないことが明らかとなった.また、繊維の種類によっ て S-N 線図の傾向が異なることが明らかとなった.この ことから、さらに形状および寸法を考慮した S-N 線式を 求める必要があると考えられる.

図-5に示すひび割れ幅-サイクル数の関係より, 有機 繊維を用いた UFC は, ひび割れ発生後, 徐々にひび割れ

	範囲	S-N線式
PVA	logN≧2.80	S=-0.1179logN+1
	2.80 <logn<6.30< td=""><td>S=-0.0486logN+0.8063</td></logn<6.30<>	S=-0.0486logN+0.8063
РР	$\log N \ge 1.00$	S=-0.0714logN+1
	1.00 <logn<6.31< td=""><td>S=-0.1086logN+1.1848</td></logn<6.31<>	S=-0.1086logN+1.1848
AR	logN≧6.71	S=-0.0999logN+1

図-5 ひび割れ幅-サイクル数の関係

幅が拡大して破断に至る.そのときのひび割れ幅は繊維 長の約10%であることがわかった.

4.まとめ

本研究により得られた結果を以下に示す.

(1) ひび割れ発生後の最大引張応力を同程度にした PVA,
 PP および AR を混入した UFC 供試体において,疲労試験
 では200万回強度に達する応力比が, PVA と PP は S=0.50,
 AF は S=0.33 と異なっていた.

 (2) S-N 線図および S-N 線式を示すことによって, PVA,
 PP および AR を混入した UFC 供試体では, PP 供試体の 疲労強度が最も高いことが明らかとなった.

今後は, S-N 線式の傾向が繊維の種類によってそれぞ れ異なっていたことから,さらに形状および寸法を考慮 した S-N 線式を求める必要があると考えられる.

【参考文献】

1)志村彩,平川彩織,稲熊唯史,一柳昌志,岡本享久: 高強度繊維補強コンクリートのひび割れ発生後の引張疲 労特性,土木学会年次学術講演会,5-258,2014/9 2)田中良弘,横田弘,岩波光保,前堀伸平:超高強度繊 維補強コンクリートの気中・水中曲げ疲労特性,コンク リート工学年次論文集,Vol.27,No.2, pp.1312-1313, 2005