海洋環境に暴露した重量コンクリートの耐久性に関する検討

太平洋セメント株式会社 正会員 ○野崎 隆人 太平洋セメント株式会社 正会員 肥後 康秀 太平洋セメント株式会社 正会員 杉山 彰徳 国立研究開発法人 港湾空港技術研究所 正会員 山路 徹

1. はじめに

津波による人的・物的被害を最小限に抑える上で、港湾コンクリート構造物による防災・減災機能の強化は重要である。波力に対して海洋構造物の安定性を保持するには、構造物の自重を増加させることが有効であり、一つの方策として重量コンクリートの使用が考えられる。前稿では、海洋構造物への重量コンクリートの適用性を確認するため、海洋環境下で暴露試験を行い、暴露1年経過時の結果を示した¹⁾。本稿では2年間暴露した重量コンクリートの性能について確認し、骨材の種類による強度の違いについて考察を加えた。

2. 試験概要

2. 1 使用材料およびコンクリート配合

使用材料やコンクリート配合は前稿と同一である.使用材料を表-1に示す.重量骨材には、鉄鋼二次製品である金属スラグ系骨材、酸化鉄粉、および天然鉱物である重晶石を用い、比較用の普通骨材には砕砂と砕石を使用した.

試験水準は、重量コンクリート 3 水準(設計単位容積質量 3.6、3.4、3.2 t/m^3)、および普通コンクリート(2.3 t/m^3) の計 4 水準とした。各水準における骨材の組合せを表-2 に、コンクリートの配合を表-3 に示す。コンクリートの目標スランプは8±2.5 t/m^3 0 目標空気量は2.0±1.0%として混和剤量により調整した。

2. 2 試験項目

コンクリート試験体は標準水中養生28日後に暴露試験に供した. 暴露試験は,海水噴霧が1日2回(1回約4時間)繰り返される環境(飛沫環境)と干満(潮位差1.5m)が1日2回繰り返される環境(干満環境)にて実施しており,材齢2年が経過した. 測定項目は外観観察,圧縮強度とした.

加えて飛沫環境については塩化物量の測定, EPMA, XRD による分析を行った.塩化物量は表面から5cmまでの深さを1cm毎に切断して試料を調製し、JSGE-G 572 に準拠して測定した. EPMA は試験体表面から幅4cm×深さ4cmの面分析を行った. XRD は表面から深さ1cmまでの部分と深さ2cmから3cmの部分をそれぞれ切り取って粉砕し、分析に供した.

3. 結果

(1) 外観観察

1年経過時と同様に、HWC-3.6以外の配合では、剥離や欠損等の変状は認められなかった.

表-1 コンクリートの使用材料

材料	記号	備考						
セメント	C	普通ポルトランドセメント 密度 3.16g/cm ³						
細骨材 (S)	HS1	酸化鉄粉 表乾密度 4.95g/cm³, 吸水率 1.65%						
	HS2	金属スラグ系骨材 表乾密度 4.27g/cm³, 吸水率 1.12%						
	HS3	重晶石 表乾密度 4.03g/cm³,吸水率 1.41%						
	NS	埼玉県産砕砂 表乾密度 2.65g/cm³, 吸水率 1.93%						
粗骨材 (G)	HG1	金属スラグ系骨材 表乾密度 4.27g/cm³, 吸水率 0.47%						
	HG2	重晶石 表乾密度 4.12g/cm³, 吸水率 0.54%						
	NG	茨城県産砕石 表乾密度 2.65g/cm³, 吸水率 0.55%						
混和剤	SP	ポリカルボン酸エーテル系高性能 AE 減水剤						
	AD	リケ゛ニンスルホン酸系 AE 減水剤						
	DF	消泡剤						

表-2 コンクリートの水準と骨材の組合せ

配合名	HWC-3.6	HWC-3.4	HWC-3.2	NC-2.3	
使用骨材	HS1, HG1	HS2, HG1	HS3, HG2	NS, NG	

表-3 コンクリートの配合

配合名	W/C (%)	s/a (%)	単位量(kg/m³)					単位容	
			W	0	S	G	SP[AD]	DF	積質量
				С			(C×%)		(kg/m^3)
HWC-3.6	50	48	170	340	1668	1559	0.6	0.06	3737
HWC-3.4		50	170	340	1524	1473	1.0	_	3507
HWC-3.2		45	170	340	1302	1561	1.0	_	3373
NC-2.3		46	170	340	856	1004	[0.3]	_	2370

キーワード: 重量骨材, 重量コンクリート, 塩分浸透性, EPMA, XRD, 耐海水性

連絡先: 〒285-8655 千葉県佐倉市大作 2-4-2 太平洋セメント (株) 中央研究所 TEL043-498-3905 FAX043-498-3849

一方, HWC-3.6 の表面では, 1 年経過の段階で細骨材中の金属鉄による錆 汁や部分的な膨れが確認されていたが, 膨れの進行が認められ, 表層付近 の断面の欠損が考えられた.

(2) 圧縮強度

図-1 に,海洋暴露と標準水中養生における圧縮強度の結果を示す.海洋環境暴露では,暴露から2年で強度の低下やばらつきが認められ,特に飛沫環境暴露ではHWC-3.4 を除き強度の低下が認められた.

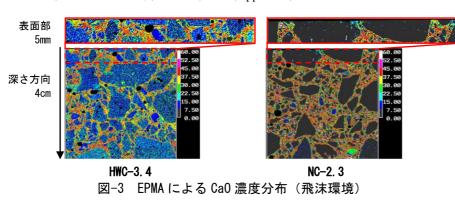
(3) 塩分浸透性

図-2 に、飛沫環境における塩分浸透量を示す. HWC-3.6 や HWC-3.2 に 比べて HWC-3.4 と N-2.3 の塩化物量が少なかった. 特に HWC-3.4 では、 表面から 0-1cm の部分における塩化物量が低かった.

(4) EPMA 分析

図-3 に, HWC-3.4 と NC-2.3 の EPMA 分析による CaO 濃度分布を示す. 表面部で骨材の存在しないペースト部分に着目すると, NC-2.3 と比較して HWC-3.4 は CaO 濃度が高く, 組織がより健全であることを示している.

(5) XRD 分析


海水の作用による強度低下の原因には、Ca の溶脱による組織の多孔化や、エトリンガイトの生成による表層の膨張破壊が考えられる $^{2)}$. 特に海水では、CIと $Ca(OH)_2$ が反応して溶解度の高い $CaCl_2$ を生成し、溶脱が進行しやすい。 図-4 に、NC-2.3 の XRD の回折パターンの一部を示す。深さ 2-3cm の内部と比べて 0-1cm の表面部では $Ca(OH)_2$ の減少が認められた。一方で表面部のエトリンガイトの顕著な増加は認められなかった。また、HWC-3.2 でも NC-2.3 と同様の傾向が認められた.以上より、強度低下の主な原因は、Ca の溶脱による水和組織の多孔化によるものと考えられた.

4. まとめ

重量コンクリートの海洋環境暴露試験を行った. 材齢 2 年の時点において, 飛沫環境では HWC-3.4 を除く配合で強度の低下が認められ, HWC-3.6 では金属鉄の膨れによる表面部の断面の欠損が, その他の配合では Ca の溶脱による水和組織の多孔化が主な原因と考えられた.

【参考文献】

- 肥後 康秀 他:海洋環境下での暴露試験による重量コンクリートの耐海水 性評価,土木学会第68回年次学術講演会,V-054,pp.107-108,2013
- 2) 福手 勤 他:海洋環境に 20 年間暴露されたコンクリートの耐久性に関する 研究,土木学会論文集, No.442, V-16, pp.43-52, 1992

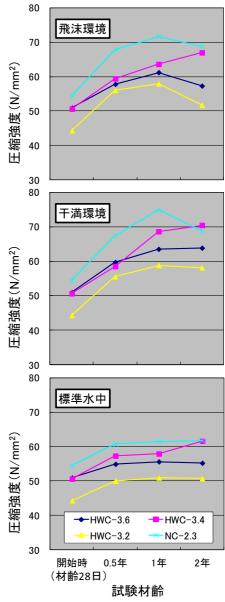


図-1 暴露材齢と圧縮強度の関係

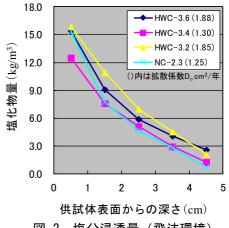


図-2 塩分浸透量(飛沫環境)

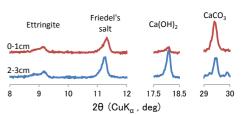


図-4 XRD 回折パターン(NC-2.3)