中庸熱ポルトランドセメントをベースとするスラグ混和コンクリートの諸物性

太平洋セメント(株) 正会員 〇森 寛晃 太平洋セメント(株) 東 洋輔 正会員 太平洋セメント(株) 正会員 三谷 裕二 太平洋セメント(株) 正会員 谷村 充

1. はじめに

して、高炉スラグやフライアッシュなどの副産物を有効 ンは実測した断熱温度上昇特性より、壁部材(高さ 4m, 利用するためのセメント・コンクリートの研究開発が盛 厚さ 2m,長さ 10m)中心部の温度履歴として導出した。 んである。ここ数年は、高炉スラグの分量を C 種相当と 3. 実験結果 したスラグ混合セメントについて、コンクリート諸物性 **3.1 コンクリートの諸物性** の把握や温度ひび割れ抵抗性の評価が行われ、実大部材 フレッシュ性状の結果は、表1に併記した。配合によ レベルの施工実験も行われている例えば1)。

変化させたコンクリートにつき、マス部材を想定した熱 基材とする NS 処方の遅延程度は MS 処方より少ない。 履歴下での諸物性を把握し、これら物性値を用いて、3 断熱温度上昇特性を回帰式係数として表 2 に示す。終

2. 実験概要

普通セメント(N)を、高炉スラグ微粉末は比表面積の異な する係数(α , β)が MS 処方よりも大きい。 る 2 種類(3000cm²/g 級と 4000cm²/g 級)を使用した。試験 因子は、セメントおよびスラグの種類に加え、スラグ混 和割合(45%および 60%)とした。スラグ混和処方は、全 SO3量が3%となるよう無水石こう(AH)を添加した。コン クリート配合を表1に示す。水結合材比(W/B)は50%,細 骨材率は 45% とした。AE 減水剤(Ad)使用量は B×0.25% とし, 目標 SL が 12.0±2.5cm になるよう W を調整した。

試験項目は、コンクリートのフレッシュ性状、断熱温

クリートの力学特性は、マス部材を想定した熱履歴下の 近年,低炭素化社会の構築に向けた取り組みの一環と 他,20℃環境下での基本物性を取得した。熱履歴パター

る W の変化は $5kg/m^3$ 以内であった。凝結始発時間は, 本研究では、中庸熱ポルトランドセメントを基材とし、いずれも6~7時間だが、Mを基材とするスラグ混和処方 高炉スラグ微粉末の比表面積や混合割合を B 種の範囲で (MS 処方)の終結時間は M より 2~3 時間遅延した。N を

次元 FEM 解析を行い、温度ひび割れ抵抗性を評価した。 局断熱温度上昇量(K)は、M を基準として、スラグ混和割 合 60%では小さく, 45%では大きい。 さらに, スラグ 4000 セメントは、市販の中庸熱セメント(M)および研究用の の方が大きい。一方、NS 処方は、断熱温度上昇速度に関

表 2 断熱温度上昇式の係数※

配合	K	α	β			
MB(4000)60	37.3	0.669	0.706			
MB(3000)60	35.6	0.605	0.959			
MB(4000)45	44.7	0.626	1.01			
MB(3000)45	44.3	0.528	0.856			
NB(4000)60	44.7	0.768	1.01			
NB(3000)60	41.7	0.697	1.01			
NB(4000)45	50.8	0.823	1.10			
NB(3000)45	48.0	0.758	1.01			
M	40.5	0.674	0.859			

表 1 コンクリート配合およびフレッシュコンクリート性状

	単位量(kg/m³)						フレッシュコンクリート性状					性状		
配合		В						Ad	SL Air C.T 凝結			時間		
	W	С		Bl	FS	AH	S	G	(B×%)	(cm)	(%)	(°C)	(h-m	nin)
		M	N	4000	3000								始発	凝結
MB(4000)60	156	112	_	187		13	810	1019		14.0	4.5	21.0	6-35	12-45
MB(3000)60	156	112	_	1	187	13	811	1011		10.5	3.5	21.3	6-55	12-35
MB(4000)45	158	163	_	142	1	11	810	1019]	10.0	4.9	21.0	7-25	11-05
MB(3000)45	156	160	_	1	140	11	814	1025		10.0	5.0	21.7	7-15	11-15
NB(4000)60	158	_	113	190	1	13	808	1011	0.25	11.0	4.8	21.7	6-40	10-35
NB(3000)60	157	_	113	1	188	13	810	1013]	13.5	3.9	21.4	6-35	9-25
NB(4000)45	160	_	165	144		11	805	1007		10.0	4.7	21.8	6-20	8-35
NB(3000)45	158	_	163	1	142	11	809	1012		9.5	5.0	21.4	6-55	9-20
M	158	316	_	_		_	808	1016		10.0	4.9	22.2	7-10	9-15

キーワード 中庸熱ポルトランドセメント,高炉スラグ微粉末,熱履歴,自己収縮ひずみ,温度応力解析 連絡先 〒285-8655 千葉県佐倉市大作 2-4-2 太平洋セメント(株) 中央研究所 TEL. 043-498-3804

熱履歴下のコンクリート圧縮強度を図1に示す。また、有効材齢28日時点の熱履歴下強度を算出し、20℃環境下の強度に対する比を強度比として、同図に併せて示す。強度比に着目すると、NS処方よりもMS処方の方が、また、スラグ3000の方が高い。これはMの熱履歴下での強度発現が大きいこと、スラグ3000の混和により初期の温度上昇が低く抑えられたことが、熱履歴下での強度発現の面で有利に作用したためと考えられる。

スラグ混和処方の自己収縮特性は、材齢 1 日付近で膨張ひずみが生じ、その後、収縮に転じるが、熱履歴を受けると、材齢初期の収縮は大きくなった。初期膨張の最大ひずみを起点として、収縮が収束するまでのひずみ変化量を図 2 に示す。スラグ混和処方のひずみ変化量は Mよりも大きく、MS 処方のひずみ変化量は NS 処方よりも小さい。また、スラグ 3000 の方がひずみ変化量は小さい。

3.2 温度応力解析によるひび割れ抵抗性評価

熱履歴下で取得した強度および自己収縮ひずみの物性値を用いて、3次元 FEM 温度応力解析(モデルは前述の壁部材)を行い、温度ひび割れ指数を算出した(有効材齢 91日まで)。解析条件を表3に示す。最小温度ひび割れ指数を図3に示す。検討処方の中ではMの温度ひび割れ指数が最も大きく、総じて MS 処方の方が NS 処方よりも指数値が大きい。指数が最小となる有効材齢に着目すると、NS 処方よりも MS 処方の方が,また、スラグ混和割合45%処方よりも60%処方の方が遅くなる傾向が認められる。MS 処方は、NS 処方よりも温度応力が小さいため、ひび割れ指数は大きくなるが、スラグ混和による自己収縮進展の影響が相対的に大きくなり、最小ひび割れ指数の得られる時期が遅くなったと考えられる。

4. まとめ

本研究から得られた結果を以下にまとめる。

- 1) MS 処方の断熱温度上昇特性は、スラグ比表面積が小さく、スラグ混和量が大きいほど終局温度上昇量は小さい。また、NS 処方よりも断熱温度上昇速度は小さい。
- 2)マス部材を想定した熱履歴下での強度発現性は, MS 処方の方が NS 処方よりも大きい。
- 3) MS 処方は、熱履歴下での強度発現性に優れ、かつ温度上昇量と自己収縮ひずみが小さいため、NS 処方よりも優れた温度ひび割れ抵抗性を有する可能性がある。

参考文献

1) 米澤敏男ほか: エネルギー・ CO_2 ・ミニマム(ECM)セメント・コンクリートシステム, コンクリート工学, Vol.48, No.9, pp.69-73(2010)

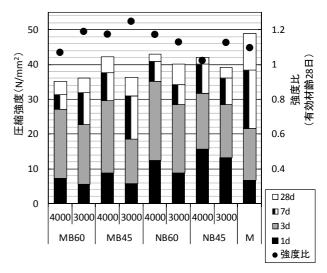


図1 コンクリートの圧縮強度(熱履歴)

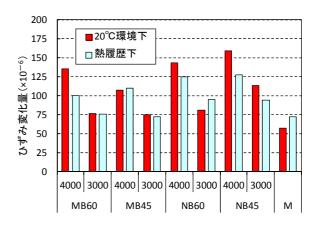


図2 初期膨張の最大ひずみ以後のひずみ変化量

表3 主な解析条件

入力条件	解析に用いた物性値		
断熱温度上昇	各配合の実測値 (初期温度 20℃)		
熱膨張係数	M は 10μ / \mathbb{C} ,それ以外 12μ / \mathbb{C}		
圧縮強度	f _c '(t _e)=t _e /(a+b·t _e), t _e は有効材齢 (熱履歴下)		
ヤング係数	y=6.85x ^{0.42} (熱履歴下)		
引張強度	y=0.29x ^{0.66} (20℃環境)		
ポアソン比	0.2		
クリープ構成則	ヤング係数の低減方法は JCI 法による		
自己収縮	熱履歴下のひずみと有効材齢の関係		

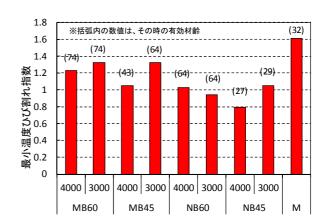


図3 最小温度ひび割れ指数