超音波非破壊検査による覆エコンクリート内部亀裂厚さおよび深度の検知精度

明石高専都市システム工学科 学生会員 ○松本俊範明石高専都市システム工学科 正会員 鍋島康之日本マテック(株) 神田文義

1. はじめに

国土交通省の発表¹⁾では平成24年1月1日から平 成25年3月31日までにトンネルや橋などの鉄道施 設でコンクリートやモルタルがはがれて落下する事 故が77件発生しており、コンクリートの内部劣化を 判定する手法が必要とされている。本研究では超音 波トモグラフィーによる非破壊検査法を用いてコン クリート内部に生じた亀裂の検査手法について検討 したので報告する。

2. 超音波トモグラフィー非破壊検査

本研究で使用した非破壊検査装置は日本マテック (株)製超音波トモグラファー探傷システム A1040 MIRA (写真 1) である。本装置には 12ch のセンサ ーがあり,各チャンネルには4個の DPC (Dry Point Contact) センサーが配置され,計48個のセンサーが 下面に配置されており,1056通りの路程信号を受信 して演算させることで信号の位置精度の向上,ノイ ズの消去を行い,断面図をトモグラフィーとして可 視化している。まず,1chから超音波を送信し、残り の11ch で受信する。次に2chから超音波を送信して 3~12ch で受信する。これを順に送受信チャンネルを 切り換えて66通りの信号を受信することで供試体断 面図を作成するシステムになっている。

3. 検査手法ならびに検査結果

本研究では,図1,2に示すような疑似供試体を 作成した。直径10cm,高さ20cmのコンクリート円

図1 内部亀裂を有する擬似供試体(断面図)

柱供試体を用いて割裂試験を行い,2分割した供試 体にスペーサーを挿入し,疑似的な亀裂を作成した。 それを図1に示すように疑似供試体内に埋め込み, 亀裂厚さや亀裂発生位置が既知なコンクリート供 試体を作製した。この疑似供試体を用いて図2測線 ①に示す位置において超音波非破壊検査を行い,亀 裂の厚さや位置をどの程度精度よく検知できるか を検討した。

3.1 亀裂厚さの検知精度

図3,4は図2測線①における超音波トモグラフィ ー画像である。内部亀裂の厚さが超音波非破壊検査 にどのような影響を及ぼすかを検証するために,内 部に挟み込むスペーサーの厚さを変化させることで 内部亀裂の厚さを,図3は0.1mm,図4は0.5mmと 変化させて実験を行った。亀裂深度は100mmとして いる。図中の縦軸は深度,横軸は試験機中心からの

キーワード:覆工コンクリート、内部亀裂、超音波非破壊検査、亀裂厚さ、探査深度 連絡先:〒674-8501 兵庫県明石市魚住町西岡 679-3 明石工業高等専門学校 TEL 0'

TEL 078-946-6170

-833-

位置を示している。通常、超音波が供試体内部の亀 裂に到達すると、コンクリートと空気の音響インピ ーダンス値の違いにより境界面で反射される。そし て,反射された超音波(エコー)の強度を読み取り, 強度の強いエコーを観測できた箇所は明色で表示さ れるため、強度の強い色から赤、黄、緑、青、黒色 となっており、黒色はまったく反射していないこと を意味する。一般的にコンクリートと空気の音響イ ンピーダンス値の差は非常に大きく、超音波は90% 以上反射されてしまうため, 亀裂を観測した箇所は 赤,黄,緑色で現れる。図3,4より内部亀裂の厚さ を変化させても赤や黄色といった強度の強いエコー が得られた範囲が変化していないことがわかる。ま た、亀裂の厚さを変化させても赤、黄、緑色が現れ る位置も変化していない。これより、亀裂の厚さは エコーの強度に影響しないといえる。これは超音波 の反射はコンクリートと空気との境界面で生じるた め、亀裂厚さによる差が生じなかったのだと考えら れる。

3.2 亀裂深度の検知精度

次に, 亀裂深度が超音波非破壊検査にどのような 影響を及ぼすかを検証するために、コンクリート内 部の亀裂深度をコンクリート供試体上面から 50mm の位置に変化させた供試体を用いて検査を行った。 なお亀裂厚さは0.5mmである。図5は図2測線①に おいて検査を行った結果である。図4,5を比較する と、図4では赤、黄色が深度100mm付近にあり、概 ね亀裂深度と一致しているが、図5では内部亀裂を 深度 50mm の位置に設けているのに対し、緑色の範 囲が確認できたが、深度 90mm 付近に広く拡散して おり、図5のトモグラフィー画像から亀裂深度を精 度よく測定できたとはいえない。これは、超音波非 破壊検査をコンクリートに用いる場合、骨材やコン クリート内部の空気などの阻害要因による減衰を小 さくするために、低い周波数を用いて波長の長い超 音波を使用しているが,波長が長くなることにより, 表面に近い部分に存在する亀裂を検出しにくくなっ ている²⁾からだと考えられる。

4. まとめ

本研究では,非破壊検査法の一つである超音波非 破壊検査法がコンクリート内部の亀裂をどの程度の 精度で検知可能かを検証した。本研究で得られた成

図5 亀裂深度 50mm のトモグラフィー画像

果を以下に示す。

- (1) コンクリート内部の微小な亀裂を超音波非破壊 検査では検知することができた。
- (2) 亀裂の厚さを変化させてもエコーの強度に差は 見られなかった。
- (3) 亀裂深度が浅い場合,検知精度が悪くなる。
 【参考文献】1)国土交通省:鉄道構造物における剥落事象について,http://www.mlit.go.jp/common/
 000995196.pdf (2015年4月1日取得)
 2)日本非破壊検査協会:非破壊検査便覧,pp.427-567,1972.

-834-