異なる周波数のバイブレータを用いたかぶりコンクリートの品質改善の検証

芝浦工業大学学生会員○太田 真帆元芝浦工業大学八木 勝之エクセン正会員小野寺 三男芝浦工業大学正会員伊代田 岳史

1. 背景・目的

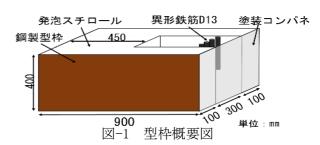
バイブレータによる締固めは、エントラップドエアを追い出し、強度・水密性・耐久性に優れたコンクリート構造物の施工を可能にする。またバイブレータの時間当たりの締固め能力は大きいため、作業の効率性を高め打重ね時間を短縮できる。しかし、構造物の鉄筋配置によってはバイブレータの振動が伝達されないことによる締固め不足や、バイブレータの径が大きいことにより、挿入できない箇所の表面品質の低下が問題となっている。そこで、本研究は上記の問題の解決策として、小径のバイブレータを用いてかぶり部分に挿入することで品質が向上するのか、また使用に適するバイブレータの周波数があるのかを検証することを目的とした。

2. 実験概要

2.1 型枠及び配合

本研究では、図-1 に示す型枠で、内側に発砲スチロールを使用することでバイブレータによる振動の跳ね返りを防ぎ、現場でのコンクリートの振動を再現した。使用した鉄筋は D13 で、締固め不足、かぶり部分のバイブレータの挿入による品質変化をみるために過密配筋を再現した。鉄筋の間隔は 30mm、かぶり厚さを 60mm とした。

配合は表-1 に示すように単位水量を変動させて、 一般的なスランプ 12cmのコンクリートと大きく材料 分離しやすいスランプ 20cmのコンクリートの2配合 で行った。


本研究で使用したバイブレータはかぶりへの挿入が可能な通常よりも小径な直径28mmのものを使用し、その性能を表-2に示す。どちらの周波数もJISA8061「内部振動機」では高周波と定義されているが、本研究では170Hzを低周波、210Hzを高周波と定義した。

2.2 打設方法

コンクリートを躯体内部に流し込み、図-2のようにバイブレータを挿入してコンクリートを鉄筋間通過させた。その後、かぶり部分にもバイブレータを挿入して締固めを行った。バイブレータの挿入時間は躯体内部には15秒間、かぶり部位には10秒間とした

2.3 評価方法

洗い分析試験、表面品質の画像解析、締固めエネルギーの算出を行い品質変化を確認した。

振動機の 種類	振動体		偏心錘		振動体質	生操柜柜	振動数	遠心力
	直径 (cm)	長さ (mm)	質量 (g)	偏心量 (kg)	振期14月 量(kg)	先端振幅 (mm)	振動致 (Hz)	迷心刀 (kg)
低周波	28	360	163.5	3.08	1. 24	1. 32	170	59
高周波		300	114.6	2. 9	1. 24	1.04	210	39

表-1 コンクリートの計画配合とフレッシュ性状

セメント	W/C (%)	s/a (%)	単位量(kg/m³)				フレッシュ性状	
種類			W	OPC	S	G	スランプ (cm)	空気量 (%)
OPC	50	50	165	330	884	932	12.0	5.9
			200	400	811	855	20.0	3.0

表-2 バイブレータの性能

図-2 バイブレータの挿入位置

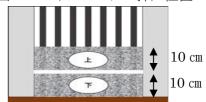


図-3 洗い分析のコンクリート採取位置

キーワード:かぶりコンクリート バイブレータ 周波数 洗い分析

連絡先 〒135-8548 東京都江東区豊洲 3-7-5 芝浦工業大学 Te103-5859-8356 E-mail: me15022@sic.shibaura it.ac.jp

3. 実験結果

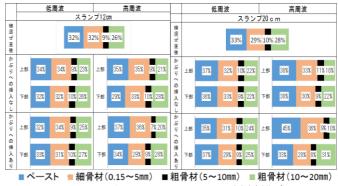
3.1 洗い分析試験による材料構成比の比較

かぶり部からコンクリート(0.85L)を図-3 のよう に上下に分けて採取した。このコンクリートを水洗 いし、骨材を 105℃の乾燥炉で 24 時間乾燥させた。 その骨材を細骨材(0.15~5mm)と粗骨材(5~10mm、10 ~20mm)にふるい分けを行い、それぞれの絶乾重量を 測定した。本研究では、材料の構成比のばらつきを 4%1)とした。材料構成比を求めた結果を図-4に示す。 かぶりへの挿入無しにおいては周波数の違いによる 影響は少ないが、かぶりへの挿入有りの場合は高周 波では材料分離をおこしたが、低周波では材料分離 しなかった。

3.2 画像解析による表面品質評価

挿入するバイブレータの周波数の違い、かぶりへ の挿入の有無によって、表面の品質に差があるのか をかぶりコンクリートの表面画像を二値化処理し検 証した。結果を図-5に示す。スランプによらず、か ぶりへの挿入が有る場合は低周波、無い場合は高周 波が空隙の少ない表面となった。最も空隙が少ない 表面となったのは低周波をかぶりに挿入したときで あった。

3.3 締固めエネルギーと材料分離、表面品質の関係


締固めエネルギーを算出し2)、洗い分析試験と画 像解析の試験結果との相関性をみた結果を図-6,7に 示す。かぶりコンクリートの品質は締固めエネルギ 一が大き過ぎても小さ過ぎても改善をせず最適なと ころがある。品質向上に有効なのは、低周波バイブ レータをかぶりにも用いて発生する締固めるエネル ギーが最適なのが分かった。

4. まとめ

- 1) かぶりにバイブレータを挿入有りの時は低周波で は材料分離はせず、高周波では材料分離した。
- 2) かぶりにバイブレータを挿入無しの時は高周波の 方が空隙の少ない表面を得ることができた。
- 3) かぶりに低周波のバイブレータを挿入したときの 締固めエネルギーが最も品質向上に適した。

参考文献

- 1) 尾上幸造ほか:鉄筋間通過によるコンクリートの配合変化、コンクリート工学年次論文
- 集、Vol. 62、No. 1、2006、pp. 119-128
- 2) 梁 俊ほか: コンクリートのフレッシュ性状が締固め完了エネルギーに与える影響。コン クリート工学年次論文集、Vol. 28、No. 1、2006、pp. 1097-1102

かぶりコンクリートの材料構成比

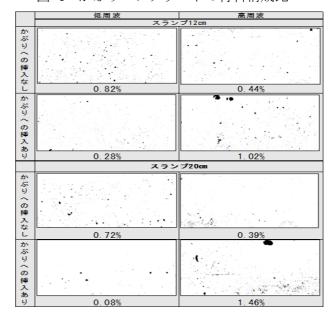


図-5 二値化画像と空隙率

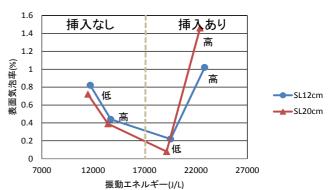


図-6 締固めエネルギーと表面気泡率

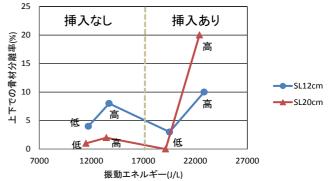


図-7 締固めエネルギーと骨材分離率