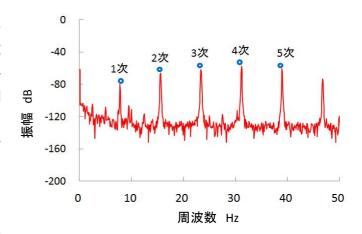
高次振動法によるPC外ケーブルの張力測定

川田建設(株) 正会員 〇小林 太之 川田建設(株) 正会員 今井 平佳 中日本高速道路(株) 孝行 中日本高速道路(株) 小林 大助 金崎


1. はじめに

従来の PC 橋は、PC 鋼材をコンクリート内部に配置していたが、橋梁本体の自重軽減、施工性の向上、PC ケーブルの点検の容易性や再緊張および取替が可能といった維持・管理性の向上という利点から、外ケーブ ル構造の適用が増えている。外ケーブル構造で重要なのは PC 外ケーブルの張力であり、PC 外ケーブルの張 力測定は、従来、振動法により行われていた。しかし、曲げ剛性値が既知であることが前提であるため、事 前に実物大試験等により曲げ剛性値を計測する必要があった。それに対し、高次にわたる複数の固有振動数 を測定することで、PC 外ケーブルの曲げ剛性と張力を同時に算定可能な「高次振動法」が開発された。本報 告は、実橋梁におけるPC外ケーブルの張力を、高次振動法により測定した結果と設計値を比較して報告する。

2. 高次振動法を用いた張力測定システムとは

高次振動法を用いた張力測定システムは、PC 橋の外 ケーブルやエクストラドーズド橋の斜材において、施 工時もしくは供用時のケーブル緊張力が確認できる手 法である。複数の高次振動数とモード次数の関係(図 -1) より、ケーブル長とケーブル単位質量がわかれば、 ケーブルの張力と曲げ剛性値を同時に求めることがで きる。張力と曲げ剛性値が同時に算定できるため、テ ストピースでの事前実験や実橋でのキャリブレーショ ン等による曲げ剛性値の把握は不要となる。

測定方法は、ケーブルに加速度計を取り付け、ハン マーで打撃を加えて加振し、固有振動数を測定し、解 析ソフトを用いて張力および曲げ剛性を算定する。

固有振動数測定結果 (P2-P3 区間⑧) 図-1

3. 測定ケーブルと緒元

測定ケーブルは、興津川橋 (PC5 径間連続箱桁橋)の外ケーブル(内部 充てん型エポキシ樹脂被覆 PC 鋼よ り線)の19S15.2である(**表-1**)。緊 張力を測定したケーブルは、緊張が 完了している14本であり、測定箇所 は、支間中央付近下側の偏向部間と した (図 - 2)。

表-1 ケーブルの仕様(19815.2)

項目	断面図		
ケーブル外径 (mm)	82	&&&&	
規格破断荷重(kN)	4,959	888888	(
規格降伏荷重 (kN)	4,218	888888	
鋼材断面積(mm²)	2,635.30	83838383	
ケーブル単位質量(kg/m)	21.945	8888	

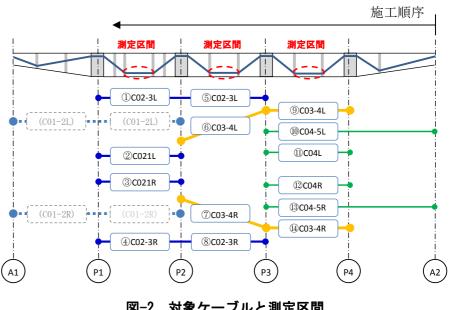


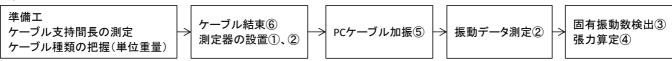
図-2 対象ケーブルと測定区間

キーワード 高次振動法、外ケーブル、張力測定、曲げ剛性、加速度計

連絡先 〒114-8505 東京都北区滝野川 6-3-1 川田建設(株) TEL. 03-3576-5321 E-mail: hirayoshi_imai@kawadaken. co. jp

4. 測定機材と測定方法

高次振動法による測定には**表-2**に示す機材を使用する。 測定状況を**写真-1**に示し、**測定フロー**の順序で行う。


表-2 測定機材

	機材名	用途	数量
1	加速度計	: 振動測定	2個
2	データロガー	: 振動測定	1台
3	周波数解析ソフト	: 固有振動数検出	1台
4	張力解析用ソフト	: 張力算定	1台
(5)	プラスチックハンマー	:ケーブル加振	1個
6	ホースバンド、保護ゴム	: 加速度計取付治具	適量

写真-1 測定状況

測定フロー

5. 測定結果

測定結果を表-3に示す。

表-3 測定結果

測定日: H26.8.29

								从[元 日 . TIZ 0.0.Z 0
径間	測定	ケーブル	測定結果	設計値	設計値との差		緊張日	定着部導入張力
1主 [刊	No.	No.	(kN)	(kN)	(%)			(kN)
P1-P2	1	C02-3L	2,949	2,904	101.6	1.6	H26. 8.28	3,127,950
	2	C021L	2,928	2,912	100.5	0.5	H26. 8.29	3,127,950
	3	C021R	3,008	2,912	103.3	3.3	H26. 8.29	3,127,950
	4	C02-3R	2,986	2,904	102.8	2.8	H26. 8.28	3,127,950
P2-P3	(5)	C02-3L	2,949	2,876	102.6	2.6	H26. 8.28	3,127,950
	6	C03-4L	2,928	2,879	101.7	1.7	H25.12.16	3,093,195
	7	C03-4R	2,811	2,879	97.6	-2.4	H25.12.16	3,127,950
	8	C02-3R	2,956	2,876	102.8	2.8	H26. 8.28	3,127,950
P3-P4	9	C03-4L	2,792	2,880	97.0	-3.0	H25.12.16	3,093,195
	10	C04-5L	2,873	2,873	100.0	±0.0	H25.10. 7	3,155,754
	11)	C04L	2,774	2,881	96.3	-3.7	H25.10. 8	3,127,950
	12	C04R	2,753	2,881	95.5	-4.5	H25.10. 8	3,127,950
	13	C04-5R	2,786	2,873	97.0	-3.0	H25.10. 7	3,127,950
	14)	C03-4R	2,821	2,880	98.0	-2.0	H25.12.16	3,127,950

6. まとめ

高次振動法を用いた張力測定システムにより、緊張定着後の PC 外ケーブルを測定した結果、設計値との差が概ね 5%以下となった。

緊張日からの経過時間で測定結果と設計値との差を見ると、緊張直後(H26.8)の差の平均は+2.3%、緊張から 8 ヶ月後(H25.12)の差の平均は-1.4%、緊張から 10 ヶ月後(H25.10)の差の平均は-2.8%であり、設計値との差は時間が経過するとともにー(マイナス)の値が大きくなっている。これは、コンクリートのクリープ乾燥収縮による変形の影響により、緊張力が減少したためと考えられる。

これらのことから、高次振動法を用いた張力測定システムは、エポキシ被覆外ケーブルの初期および維持管理時の張力測定に有効であるといえる。

参考文献

- 1) 特許番号 3313028「張力のかかっているケーブルの曲げ剛性および張力の測定方法」
- 2) 特許番号 3550296「構造物の張力および曲げ剛性の測定方法」
- 3) NETIS TH-140005-A「橋梁用ケーブルの張力測定・モニタリング技術(高次振動法)」
- 4) 第 42 回土木学会関東支部技術研究発表会 V-53「高次振動法による PC ケーブルの張力測定」