高強度コンクリートパネルと高強度繊維補強モルタルを用いて補強した RC柱の破壊性状に関する実験的検討

東急建設株式会社 正会員 〇笠倉亮太,鈴木将充,黒岩俊之,三輪昌義,伊藤正憲

1. はじめに

兵庫県南部地震以降,新幹線および都市部の高架橋 や橋脚を中心に耐震補強工事が現在も進められている. 今後の耐震補強工事は,都市部の施工スペースの確保 が困難な狭隘部や早期開放を要求される店舗利用箇所 等での施工が増加すると予想される.また,近年の少 子高齢化の進行,総人口の減少等により労務者不足が 問題となっている.そこで,筆者らは施工困難箇所に 適用可能かつ,施工の省力化,省人化を目的とした高 強度コンクリートパネル(以下,パネルと略す.)と高 強度繊維補強モルタル(以下,モルタルと略す.)と高 いた耐震補強工法の開発を行っている.本稿ではせん 断破壊型の実大試験体 2 体に対して本工法による補強 を行い,せん断補強効果を確認した.

2. 工法概要

図1に工法概念図,写真1に本工法の構成部材を 示す.本工法は,写真1に示すL型の閉合鋼材,平板 上の接続鋼材,パネルおよびモルタルにより構成され る.閉合鋼材,接続鋼材およびパネルをボルト接合し た後に,パネルを埋設型枠として既設柱との隙間にモ ルタルを注入するものである.大型の施工機械や揚重 機を使用せず,人力施工することで狭隘部などの施工 困難箇所の施工を可能とし,パネルの使用による PCa 化を図ることで施工性の向上を図っている.

3. 実験概要

鋼材組立

表1に使用材料の試験結果,表2に試験体諸元,表3 に各耐力算定値,図2,3に試験体の配筋・寸法を示す. なお,図2,3の左側は既設 RC 柱,右側は補強部を示

モルタル注入

パネル設置

している. 試験体は既往の研究 1)を参考に決定した.

試験体は2体であり,試験体 No.1 は補強後のせん断 破壊型とし,試験体 No.2 は補強後の曲げ破壊型である. 両試験体ともに,一般的な鉄道ラーメン高架橋を模し た実大モデルの既設 RC 柱に対し50mmの断面増厚を行 っている.試験体の各耐力は安全係数を1.0とし RC標 準²⁾に示される算定式に準拠して算出した.なお,補強 後のせん断耐力は接続鋼材,パネルおよびモルタルを せん断補強鋼材とみなして算出したものである.

試験体 No.1 の載荷は,軸力を作用させず水平方向に 荷重を単調増加させた.一方,試験体 No.2 では地震時 の想定軸力 N=2353.6kN (σ_n=3.68N/mm²)を作用させ た状態で,水平方向に正負交番漸増載荷を行った.載 荷パターンは軸方向鉄筋の降伏変位を基準とし,曲げ 降伏に達してからは3回繰返し載荷とした.

4. 実験結果

表4に実験結果,写真2,3に試験体の損傷状況,図 4,5に荷重~変位関係を示す.試験体No.1は,P=1127kN 時にパネルに斜めひび割れが発生した.その後,斜め

モルタル

パネル 写真1 構成部材 表1 材料試験結果

キーワード 耐震補強,補修・補強,省力化,PCa

連絡先 〒252-0244 神奈川県相模原市中央区田名 3062-1 東急建設株式会社 技術研究所 Tel:042-763-9507

土木学会第70回年次学術講演会(平成27年9月)

参考文献

・せん断破壊型と判定される試験体 No.2 を本工法によ

・補強した試験体 No.2 の曲げ耐力は RC 標準による算

ることを確認した.

定値とほぼ同等となった.

り補強することで、破壊形態が曲げ破壊型へ移行す

- 1) 黒岩俊之他:水硬性樹脂と連続繊維シートを用いて補強した RC 柱の変形性能に関する実験的研究,土木学会第69回年次学術講 演会公演概要集,pp.809-810,2014.9
- (公財)鉄道総合技術研究所:鉄道構造物等設計標準・同解説 コン クリート構造物,2004.4

謝辞

-214-

本実験の実施にあたり,(株)ホクコンにご協力を頂いた.ここに記 して感謝の意を表します.