	京都大学大学院	学生会員	○小西	陽太
京都大学大学院(現	名古屋工業大学大学院)	正会員	岩井	裕正
	京都大学大学院	正会員	木元 /	小百合

1. はじめに

近年,二酸化炭素回収貯留(CCS)やメタンハイドレ ート含有層からのメタンガス増進回収法等CO2ハイド レートの利用が注目されている.CO2ハイドレート含 有地盤の力学特性の把握及び変形予測に向けて,その 力学試験データが必要であるが特に非排水条件でのガ スハイドレート含有地盤の力学試験はほとんど行われ ていない.本研究では,CO2ハイドレート含有砂供試 体を作製して非排水三軸圧縮試験を実施し,CO2ハイ ドレート含有による力学特性の変化について検討した.

2. 実験概要

(1)試験装置及び供試体:本研究では,従来の高圧三軸 試験装置に低温循環給水槽を設置することにより温度 制御を可能とした温度制御型高圧三軸試験装置を用い て,CO₂ハイドレート含有砂供試体の作製と三軸圧縮 試験を行った.供試体は含水比15%とした豊浦砂を用 い,直径35mm,高さ70mmの金属モールドに突固め ながら充填し凍結させて作製した.供試体作製時の間 隙比は0.75となるよう調節している.これを三軸室内 に設置しCO₂を圧入して供試体内にハイドレートを生 成させる.

(3)実験方法及び実験条件:図1にCO₂ハイドレートの 平衡曲線^DとCO₂ハイドレート生成過程の温度圧力条 件を示す.図中点A→Bに示すように,大気圧下10°C で設置した供試体にCO₂ガスを圧入し,背圧2.3 MPa, セル圧 2.5 MPa まで0.2 MPaの圧力差を保ち上昇させ る.さらに点 B→C に示すようにハイドレート安定存 在領域まで温度を低下させてハイドレートを生成し, さらに,背圧を10 MPa まで上昇させることにより供 試体内に残留した CO₂ ガスを間隙水に溶解させる.点 D において通水を行った後,B 値の測定を行い圧密過 程を経て三軸圧縮試験を実施する.

(3)実験方法及び実験条件:表1に実験条件を示す.初 期平均有効応力1.0 MPa, 2.0 MPa 及び3.0 MPaの計3 ケースのCO₂ハイドレート含有砂供試体の三軸圧縮試 験(Case-1-H~Case-3-H)と,比較のためハイドレートを 含有しない飽和豊浦砂供試体を用いた同条件での三軸 圧縮試験(Case-1~Case-3)を実施した.全てのケースに おいてせん断前初期間隙水圧は海底1000 mを想定し 10 MPa,温度はハイドレート安定存在領域内の1.0°C とし,ひずみ速度は0.1 %/minとした.ハイドレート 飽和率 S_r^H [%]は実験後に供試体中のハイドレートを 分解し発生した CO₂ガスを回収することで求めた.ハ イドレート飽和率 S_r^H は間隙体積 V_V のうちハイドレ ート体積 V_H の占める割合であり次式で表される.

$$S_r^H = \frac{V_H}{V_V} \times 100 \tag{1}$$

表 1 実験条件表 1 実験条件表 1 実験条件								
	せん断前	初期平均	初期	通水後	ひずみ速度	ハイドレート		
	間隙比 e_0	有効応力 [MPa]	間隙水圧 [MPa]	B 値	[%/min]	飽和率 S _r ^H [%]		
Case-1	0.74	1.0	10.0	0.95	0.1	0.0		
Case-2	0.72	2.0	10.0	0.97	0.1	0.0		
Case-3	0.72	3.0	10.0	0.96	0.1	0.0		
Case-1-H	0.76	1.0	10.0	0.88	0.1	34.6		
Case-2-H	0.73	2.0	10.0	0.92	0.1	27.8		
Case-3-H	0.73	3.0	10.0	0.93	0.1	28.5		

キーワード:ハイドレート,三軸圧縮試験,非排水

連絡先:〒615-8540 京都市西京区京都大学桂 京都大学大学院工学研究科社会基盤工学専攻地盤力学分野 075-383-3193

3. 実験結果及び考察

図2に応力-ひずみ関係を示す.ハイドレート含有砂 供試体と非含有砂供試体を比較すると,いずれの初期 拘束圧においてもせん断初期から残留状態までハイド レート含有砂供試体の軸差応力が非含有砂よりも大き くなっており強度増加が見られる.また,せん断初期 の軸差応力の立ち上がりは含有砂の方が非含有砂より も大きくなっている.特に,ハイドレート飽和率が大 きい Case-1-H では Case-1 との差が大きいことから, 初期せん断弾性係数についてもハイドレートを含有す ることにより増加し,その増加割合はハイドレート飽 和率と正の相関があると言える.これは,ハイドレー ト含有地盤を表現する構成式の定式化の際にも考慮し なければならない.

ハイドレートを含有することによる強度増加について、軸差応力の最大値を用いて比較を行った。各初期 平均有効応力における非含有砂供試体の最大軸差応力 を q_{max}^{s} ,含有砂供試体の最大軸差応力を q_{max}^{H} としてハ イドレートを含有することによる軸差応力の増加率 R_{q} [%]を以下のように定義する。

$$R_q = \left(\frac{q_{\text{max}}^H}{q_{\text{max}}^S} - 1\right) \times 100$$
 (2)

 R_q を用いて Case-1-H と Case-3-H を比較すると、それ ぞれの軸差応力の増加率は 25.7 %、27.3 %と Case-3-H の方がハイドレート飽和率が低いにもかかわらず、軸 差応力の増加率は Case-3-H の方が大きくなっている. これより、初期平均有効応力が大きい方が軸差応力の 増加率が大きくなることが考えられるが、さらにデー タの蓄積が必要である.

図3はせん断中の有効応力径路である.含有砂にお ける変相後の平均有効応力の増加量は非含有砂と比較 して顕著に大きく,固体として存在するハイドレート により正のダイレイタンシー挙動が顕著になったと考 えられる.一方,本実験では変相前の平均有効応力の 減少量についてもハイドレート含有砂供試体の方が大 きくなっており,これはせん断前の初期間隙比の違い によるものと予想されるが,今後検証していく必要が ある.限界状態での応力比についてはハイドレートの 含有,非含有及び初期平均有効応力にはよらず 1.20 と なったが,ハイドレート含有砂供試体では非含有砂供 試体と比較して変相後に大きく限界状態線を上回る過 圧密土的挙動を示し,最大応力比が大きくなった.各 初期平均有効応力において,非含有砂供試体の最大応 力比を η_{max}^{s} ,含有砂供試体の最大応力比を η_{max}^{H} として ハイドレートを含有することによる最大応力比の増加 率 R_{η} [%]を以下のように定義し,各ハイドレート飽和 率における最大応力比の増加率を図4に示す.

$$R_{\eta} = \left(\frac{\eta_{\max}^{H}}{\eta_{\max}^{S}} - 1\right) \times 100 \tag{3}$$

これより,最大応力比の増加率は初期平均有効応力に よらずハイドレート飽和率が高いほど大きくなること がわかる.

4. まとめと今後の課題

本研究では、CO₂ハイドレート含有砂供試体を作製 して非排水三軸圧縮試験を実施し、CO₂ハイドレート 含有による力学特性の変化について検討した.その結 果、ハイドレートを含有することにより非排水強度は 増加し、非含有砂と比較してダイレイタンシー挙動が より顕著になった.さらに、より過圧密土的な挙動を 示すようになり最大応力比はハイドレートの存在によ り増加した.この最大応力比の増加率はハイドレート 飽和率が高いほど大きくなった.

今後は、ハイドレート含有砂のひずみ速度依存性な どの時間依存性挙動について検討する.

<参考文献>

1) Sloan, E. D. and Koh, C. A. : Clathrate Hydrates of Natural Gases Third Edition, CRC Press Taylor and Francis Group, pp.379-386, 2007.

