不飽和砂の間隙水分布と熱伝導特性に関する研究

岡山大学大学院環境生命科学研究科 環境科学専攻 学生会員 岩崎 佳介 岡山大学大学院環境生命科学研究科 正会員 木本 和志

1. はじめに

地盤の力学的性質を知る上で土中水分量は重要なパラ メータであり、これまで多くの土中水分量計測手法が考 案・実施されている. ヒートプローブを用いて土壌水分量 を測定する手法では、塩分濃度や pH の影響を受けず、比 較的簡単かつ安価に実施することができるという利点が あり広く実施されている1).これは土中水分量増加に伴い, 熱伝導率が上昇することを利用したもので、 ヒートプロー ブにより十中熱伝導率を測定し水分量に換算するもので あるため、計測に際し熱伝導率と水分量の関係をあらかじ め知っている必要がある. 熱伝導率と水分量の関係を実験 的に求めた研究は多く²⁾,定性的には理解されているが, それらの実験結果を微視的な熱伝導メカニズムに基づい て説明する熱伝導モデルは少ない現状である. 本研究では 豊浦砂を用いて、複数の飽和度の試料を作成し熱伝導率を 計測するとともに、液相形状を変化させたモデルを用いた 熱伝導解析から熱伝導率を算出し、実験値と比較すること で間隙水分布が熱伝導性に与える影響を検討した結果を 報告する.

2. 実験概要

土壌の熱伝導率計測にはヒートプローブ法が一般的で あるが、この手法は開放系を前提としており、計測される 熱伝導率はプローブ近傍の値となる. そのため室内実験に 用いる際には十分に大きくかつ均質な系を用意する必要 性があり、試料の乱れやプローブと試料の接触状況等が測 定精度に大きな影響を与える. そこで本研究では小型かつ 均質な試料に対して,全体の平均的な熱伝導率を簡単に求 めるため、次に示すような方法で熱伝導実験を実施した. まず断熱容器に試料を熱電対アレイとともに充填しカラ ム供試体とし、この供試体底面を定温の熱浴上に定置し加 熱を行う. 規定時間が経過するまでの内部温度データを測 定し、熱伝導実験の計測データとする.実験装置の構成を 図1に示す.実験装置は試料,断熱容器,ウォーターバス, 熱電対およびデータロガーから構成される. 試料には豊浦 砂を用い、断熱容器はスタイロフォームを円筒状に穿孔し、 底部にアルミシートを接着したものである. 試料充填後は 蒸発を防ぐため熱電対線の引き出し部を残して断熱容器 上部もアルミシートで覆う. 断熱容器の高さは 10cm であ り熱電対アレイは底部から1.5cm間隔で7点取り付けてお り、熱浴は 40℃に設定している. 試料側面は断熱されて

いるため、1次元的な熱伝導場をつくることができ、比較 的小さな供試体を用いることから試料の均質性を確保で きる.

図-1 実験装置の構成

3. 熱伝導率の推定

本節では実験から得られた計測データに対し逆解析を 行うことで熱伝導率を推定する手順について説明する. 試料を均質な連続体と見なし、水と空気の移流による熱 輸送を無視できると仮定すれば、一次元熱伝導方程式は

$$\overline{\rho c} \frac{\partial T}{\partial t} = \frac{\partial}{\partial z} \left(\overline{\lambda} \frac{\partial T}{\partial z} \right)$$
(1)

と表される. ただし, ρ は密度, c は比熱, λ は熱伝導 率を意味し, $C = \rho c$ は体積熱容量を表す. いずれも巨視 的量を表すことから土粒子や水の比熱や熱伝導率とは区 別し \overline{C}, λ と表記している. 試料である豊浦砂の主要構成 鉱物は石英であるため, マクロな体積熱容量は石英の熱容 量と試料の間隙率n, 飽和度S から次の式で求められる.

$$\overline{C} = \rho_s c_s (1-n) + \rho_w c_w Sn \tag{2}$$

ただし、 $\rho_s \rho_w$ は石英および水の密度を、 $c_s c_w$ は石 英と水の比熱を意味する.式(1)に対し式(2)で得られる熱 容量と適当な熱伝導率を与え、数値解と計測結果を比較し、 残差rが最小となるときの熱伝導率 λ を求める.なお、 式(1)を解く際の境界条件は、測点1(試料底部)と測点 7(試料頂部付近)で得られた温度データを用いる.また、 数値解と計測値の残差rを

$$r^{2} \coloneqq \frac{\int_{0}^{t_{end}} \sum_{i=2}^{6} \left| T(\mathbf{z}_{i}, t) - T_{i}(t) \right|^{2} dg(t)}{\int_{0}^{t_{end}} \sum_{i=1}^{6} \left| T_{i}(t) - T_{0}(0) \right|^{2} dg(t)} , g(t) = \ln(t) \quad (3)$$

Key Words: Unsaturated Soil, Heat transfer, Meniscus

連絡先(岡山県岡山市北区津島中3-1-1、ev20205@s.okayama-u.ac.jp)

で定義する. ただし, T は式(1)の数値解を, T, は第i 番 目の測点における計測温度を、 T_0 は平均初期室温を表し、 t_{and}は計測時間長を意味する.また温度変化は計測時間の 経過に伴い指数関数的に低下するため、残差の計算におい て等間隔な時間刻みを用いると計測時間が長いほど小さ な値となることから,積分は対数軸上で行っている.

数値解析 4.

実験および逆解析から得られた熱伝導率に対し、粒子の 微視構造を反映した三相モデルを作成し、マクロ熱伝導率 の推定を行った.実験に試料として用いた豊浦砂は粒度分 布の幅が小さく50%粒径が2mm程度であるため、粒子を 直径 2mm の球体としモデル化を行う.豊浦砂の間隙比は, 最小間隙率が0.6,最大間隙率が1.0程度であり、間隙率 では37.5~50%となる. ここで同一直径の球の充填構造 に関して, 面心, 体心, 単純立方格子構造では間隙率がそ れぞれ26,32,48%であるため、今回の充填モデルには 単純立方格子構造を採用した. 図2に単位格子を示す.

図-2 単純立方格子構造における単位格子

間隙水領域の与え方は、図3に示した3通りの方法で行 った. (a)に示したモデルは固相からの水膜の厚みを変える ことで飽和度を変化させるモデルである. これを水膜モデ ルと呼ぶ.次に(b)は単位格子中央に球形の気相を入れ、気 相以外の間隙部を液相とするモデルである.気相の直径の 変化が飽和度変化に対応する. これを気泡モデルと呼ぶ. 最後に(c)に示すモデルは毛管現象により粒子間接触点付 近に間隙水が引き寄せられた状態を模擬したものでメニ スカスモデルと呼ぶ. 曲率半径 r_l と個液界面の接触角 θ_E を与えそこからもう一つの曲率半径 r,を決定する.以上の モデルを用いて行った数値解析により得られた熱伝導率 と、実験から得られた熱伝導率を図4に示す.

水膜モデルを丸のプロット,気泡モデルとメニスカスモ デルを太線、実験により得られた値を四角のプロットによ りそれぞれ示している.まず実験値は、飽和度の増加に伴 い、熱橋効果によって低飽和度領域で急激に熱伝導率が上 昇し、その後緩やかな増加となる.気泡モデルおよびメニ スカスモデルは実験値に似た傾向を示したが、水膜モデル は全飽和度にわたって緩慢な熱伝導率の増加傾向を示し た.

(a) film model

(b) bubble model

(c) meniscus model

図-3 間隙水領域与え方を変えた3モデル

まとめ 5.

複数の飽和度の試料を用いて熱伝導実験を行い逆解析 により熱伝導率を推定した結果,詳細な熱伝導率変化を得 ることができ、低飽和度領域において熱橋効果による急激 な熱伝導率の上昇も観察された. 単純立方格子構造による 粒子モデルを用いた数値解析では、気泡モデルとメニスカ スモデルでは、特に低飽和度における熱伝導率の増加傾向 を再現できており、両モデルは水膜モデルと比較して、飽 和度の増加に伴う粒子間の熱伝導範囲の増加を再現でき ていると言える. 今後は粒径や粒度分布が異なる場合に, それらパラメータが熱伝導性に与える影響を検討し、マク ロ熱伝導率を算出できるモデル作成を行うことが重要な 課題である.

参考文献

- 1) 地盤工学会編:不飽和地盤の挙動と評価,社団法人地 盤工学会, 2004.
- 2) 石田智之, 三野徹, 丸山利輔: 低含水領域における土 壌の熱伝導,農業土木論文集 103, pp.28-34, 1983

-576-