山岳トンネルのインバート変状に着目した地山評価と対応策

(独)鉄道・運輸機構 正会員 ○斉藤 道真,秋田 勝次,蓼沼 慶正,丸山 修,上野 光,渡辺 和之

1. はじめに

北陸新幹線(高崎・長野間)の一部のトンネルにおい て, 供用後に盤ぶくれが発生し, 新幹線の走行と並行し て対策工を実施せざるをえない事態が発生した. このた め, 平成20年より鉄道・運輸機構(以下,「機構」)の山 岳トンネル設計施工標準・同解説(以下,「山岳標準」) ではインバートの設置を標準化しており、昨年度末に開 業した北陸新幹線(長野・金沢間)のトンネル34本,な らびに今年度末に開業予定の北海道新幹線(新青森・新 函館北斗間)のトンネル12本では、全てインバートを設 置している. このうち, 施工中から内空への変位が著し い区間では、トンネル形状をより円形として長期的な安 定対策を図っているが、一方で、施工中に変位の収束を 確認したうえでインバートを施行したにもかかわらず、 施工後しばらくして盤ぶくれ等の変状が発生した事例が あった.

本論では、インバートに変状が発生したトンネルにつ いて、事例を分析し、その結果作成した盤ぶくれ防止対 策案について報告する.

2. 従来の地山膨張性の判定指標とその課題

山岳標準には、泥質岩類等の膨張性判定の目安(表-1) が示されており、地山強度比や浸水崩壊度等の指標とボ ーリングコアの観察結果等により総合的に判断すること とされている ¹⁾. また, 文献 2)では, 施工時のインバー ト設置の要否に関する判定基準の例がある.

ただし、これらはインバートコンクリート施工後の盤 ぶくれ発生の有無を判定可能な指標ではないため、この

表-1 泥質岩類等の地山区分の目安 1)

指標および指標値		地山分類			
		$\sim I_{N-1}$	Ιs	特S	
地理的条件	グリーンタフ地域の破砕質の泥質岩類または凝灰岩類			0	
ボーリングの施工条件	無水掘りをせざるを得ない				0
ボーリングコアの状況	応力開放により目視で体積増加が認められる			0	
	コア採取率が極めて悪い			\triangle	
	ディスキング現象を生じる			Δ	
地山強度比 G _n	$G_{\rm n} < 0.5$				0
	$0.5 \le G_n < 1.5$				0
	$1.5 \le G_n < 2.0$			0	
	$2.0 \leq G_n$		0		
スメクタイト含有量Cm	$C_{\rm m} \ge 20\%$	$W_{n} \ge 20\%$			0
地山自然含水比W _n	$C_{\rm m}$ $<$ 20%	$W_{\rm n} < 20\%$	0		
浸水崩壊度	原形を留めない 区分4				0
その他	2×10 ⁻⁶ m以下の粒子含有率 ρ _z ρ _z ≥30%			Δ	
	液性限界 W _L	$W_L \ge 100\%$			7
	地山弾性波速度 V _p	V _p <1.5km/sec			7

◎:確実に区分可能 ○:区分可能(他の指標との組合わせによる総合評価が必要) △:目安となる

点に着目した新たな指標を検討することが必要となった.

3. 変状発生状況の分析

機構が施工した新幹線のトンネル工事において、イン バートコンクリート施工後に盤ぶくれ現象が確認され、 補強や補修を要したトンネルは11本あり、延長にすると 整備新幹線の既施エトンネル約450kmのうち, 概算で1% 程度であった.

これらのトンネルでは、変位収束のための早期断面閉 合の目的でインバートコンクリートを施行した事例があ った. これに対しては、別途、早期閉合に関する再検討 を進め、インバート部掘削による変位収束を確認してか らインバートコンクリートを施工するよう、平成26年5 月に山岳標準を一部改訂している.

一方で、地質の擾乱地帯で変位が予見されていたもの を除き、施工時にそれほど変位が大きくなく比較的順調 に掘削できた箇所において, 施工後ある程度時間が経過 してから盤ぶくれが確認される事例がみられた. 盤ぶく れ発生までの時間は、インバート打設直後から、5年以 上経過後に確認されたものもあった.

4. 変状評価指標の検討

これらの事例の分析や従来の施工報告等から、変状の 発生を評価可能な指標を検討した結果、以下の知見が得 られた.

(1)地形·地質

変状が発生しやすい地質は以下のものであった. これ らを「注意が必要な地山」とした.

1)新生代の泥岩等の細粒砕屑岩類あるいは凝灰岩や凝

灰角礫岩等の火山砕屑岩類

2)風化や熱水変質及び破砕の進行 した岩類

3)蛇紋岩類等よりなる地山

これらの地山において,一般に膨 張性判断に有効とされている指標 のうち、インバート変状発生との因 果関係が顕著に有意(図-1)であっ た, 地山強度比, 浸水崩壊度, スメ クタイト含有量を指標として適用 可能であった.

(2)上下半掘削時の内空変位

内空変位や天端沈下の量あるい は変位速度とも盤ぶくれ発生との

キーワード 山岳トンネル、インバート、盤ぶくれ、地山強度比、浸水崩壊度、スメクタイト含有量 〒231-8315 神奈川県横浜市中区本町 6-50-1 電話 045-222-9072 連絡先

-231-

相関は顕著でなく、掘削時の計測結果による想定は難しいものであった.

5. 新しい盤ぶくれ対策(暫定案)の制定

以上の検討結果から、インバートコンクリートの再構築に至るような大規模変状の抑止を目標とし、文献 1)を発展させ、インバートの設計・施工の進め方の暫定案を定め、図-2のフローに基づき進めることとした。

地山強度比が 2.0 未満の地山では、底部地山の強度不 足による押出し変形が懸念されるため、吹付コンクリー トを主体とする一次インバートにより仮閉合した上で、 変位の収束を確認してから本インバートを構築するパタ

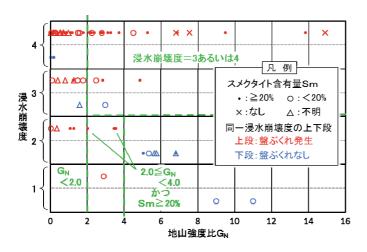


図-1 盤ぶくれの有無と浸水崩壊度、地山強度比の関係

ーン(I_{SiP})とした、インバート下の中央排水工の下側まで吹付コンクリートを施工するとともに、吹付コンクリートとインバートコンクリート間の埋戻しコンクリートを一体打設し、より円形に近いトンネル断面とすることで、変状抑制を狙っている。

さらに、地山強度比が 2.0 以上であっても、水の供給に伴う強度低下や吸水膨張が懸念される場合は、中央排水工の埋戻しにコンクリートを用いることで水の供給を極力抑えるとともに、新幹線トンネルのインバート構造上の弱点となる中央通路隅角部でコンクリート厚さを拡大できる断面(I_{NAIP})とした.

なお、本検討は機構の施工で得られたデータを基に 検討していること、インバートの形状等に関しても検 討の余地があると考えていることから、今後は暫定案 によりトンネル施工を積み重ねながら多くのデータを 蓄積し、対策の有効性検証や見直しを継続的に行って いく予定である。

参考文献

- 1)(独)鉄道建設・運輸施設整備支援機構:山岳トンネル設計施工標準・同解説,pp.42-43,2008.
- 2)大嶋健二,城間博通,伊藤哲男,村地栄次,久保田 龍郎:変状トンネルの要因分析に基づいたインバート 設置基準の提案について,第11回岩の力学国内シンポ ジウム講演論文集,pp.329-334,2002.

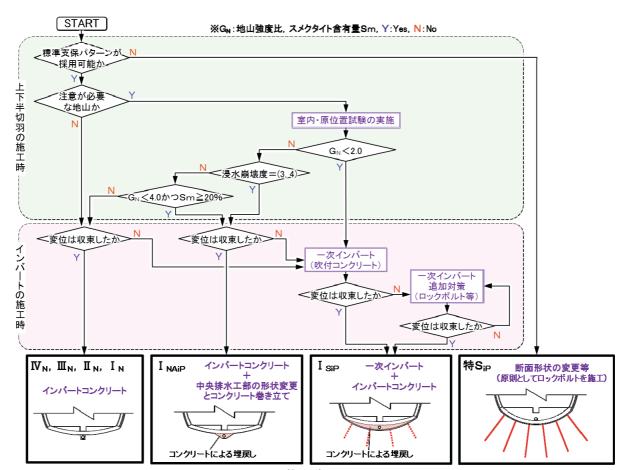


図-2 施行時のフロー