TBM 機械データと山はねの関係 --マレーシア パハン・セランゴール導水トンネル---

正会員	水戸	聰
正会員	松本	高之
正会員	河田	孝志
	正会員 正会員 正会員	正会員 水戸 正会員 松本 正会員 河田

1. はじめに

マレーシア パハン・セランゴール導水トンネルは延長 44.6km におよぶ東南アジア最長のトンネルであ る. 導水トンネル本体は、3 つの TBM (Tunnel Boring machine) 工区 (全長 34.6km)、4 つの NATM 工区 (全 長 9.1km), 1 つの開削トンネル工区(全長 0.9km)の計 8 工区で施工された.主となる TBM 工区では、土被 りが 1,000m 以上の区間が 5km, 最大土被りが 1,246m に達し, TBM 掘削中には断続的に山はねが発生した.

本稿では、TBM 機械データと山はねの発生の関係について報告する.

2. 地形·地質概要

パハン・セランゴール導水トンネルはマレーシア半島を南北に縦断するティティワンサ山脈,標高 50m~ 1300m程度を東西に横断する.山地構成体は、ペルム紀(約2億9,900万年前~約2億5,100万年前)から 三畳紀(約2億5,100万年前~約1億9,960万年前)に形成された硬質な花崗岩(細粒花崗岩~粗粒花崗岩) がほぼ全体を占め、起点側に堆積岩が分布する.

3. 山はね発生位置と発生状況

TBM トンネル内にて大土被り(1,130m)下 での円錐孔底ひずみ法による現位置試験を 実施し、初期地山応力測定を行った. 図-1 に初期地山応力状態を示す. 山はねは, TBM-1 工区で土被りが 800m 以上, TBM-2 工 区で土被りが1,000以上の区間で断続的に 発生した.山はね発生合計延長は 311m で, 発生頻度は対象区間の6~7%であった.山は ね発生位置を図-2に,発生状況を写真-1~2 に示す.

4. TBM 機械データと一軸圧縮強度の関係

TBM 機械データは、TBM スラスト力、カッ タヘッドトルク,カッタヘッド回転数,掘 進速度から計算される掘削エネルギーを用 いた. 岩盤コア採取による一軸圧縮強度と シュミットハンマによる一軸圧縮強度の関 係を図-3に、掘削エネルギーとシュミット ハンマによる一軸圧縮強度の関係を図-3に 示す. この関係は当社施工他 TBM 工事でも 同様の結果が得られていることから、一軸 圧縮強度を表す指標として有用である.

キーワート::大土被り、山はね、TBM 機械データ

ADIT-3 TBM-2 TD 5910 burden 157 by Over Dark blue sured Value σ1=13.3 MP σ₂= 5.3MP $\sigma_{1}=6.1 \text{ MP}_{2}$ σ=2.9M σ1=31.0MP

Dark blue : Measured Values by Overcoring (CCBO)

写真-1 山はね発生状況

(TBM カッタヘッド先端)

-107

連絡先:東京都中央区京橋2丁目16-1, Tel. 03-3561-3891, Fax. 03-3561-8672

図-2 山はね発生位置図

5. TBM 機械データと山はね発生条件

現位置試験から測定された最大主応力 σ_1 と最大接線応力 σ_{θ} , 山はね発生区間での TBM 機械データから換算した推定一軸圧縮 強度 σ_c をもとに山はね発生条件の検討を行う.

Q-Sysytem (Barton による) による一軸圧縮強度 σ_{c} と最大主 応力 σ_{1} の比, σ_{c}/σ_{1} を用いた山はね発生区分を以下に示す.

σ_c/σ₁が5~10:安定

σ_c/σ₁が2.5~5:山はね発生の可能性は中程度

• σ_c/σ_1 が 2.5 未満:山はね発生の可能性は大きい 図-4 に示す土被りと σ_c/σ_1 の関係より、山はね発生区間

での σ_c/σ_1 の範囲は、1.6~5.2 である. 次に σ_{θ}/σ_c を用いた山はね発生区分例を以下に示す.

- σ_θ/σ_cが 0.5~1:数分後に山はねが発生
- $\sigma_{\theta}/\sigma_{\sigma}$ が1以上:重度な山はねが発生

図-5 に示す土被りと $\sigma_{\theta}/\sigma_{o}$ の関係より、山はね発生区間で $\sigma_{\sigma_{\theta}}/\sigma_{o}$ の範囲は、0.5~1.7 である.

山はね発生区分を含めた $\sigma_{\theta}/\sigma_{o}$ と σ_{c}/σ_{1} の関係を図-6 に示 す. TBM 機械データから換算した推定一軸圧縮強度 σ_{o} が山はね 発生を予測できることがわかる.

6.まとめ

TBM 機械データ,初期地山応力測定,山はね発生区分の 検討から,以下のことがわかる.

- ① TBM 機械データから計算される掘削エネルギーが岩 盤一軸圧縮強度を表す指標として有用である.
- ② 事前に初期地山応力状態がわかれば, TBM 機械データ により, TBM 掘削時の山はね発生の予測が可能である.

参考文献

 T. Kawata, Y. Nakano, T. Matsumoto, A. Mito, F. Pittard, Al-Adzam: The Relationship between TBM data and rock burst in Long-Distance Tunnel, Pahang-Selangor Raw Water Transfer Tunnel, Malaysia, 8th Asian Rock Mechanics Symposium 2014 Sapporo

250

図-4 土被りと σ_0/σ_1 の関係

