山形盆地に堆積する泥炭性軟弱地盤への真空圧密工法の試験施工

	(株)ダイヤコンサ	ールタント	正会員	〇谷口	雄太
	(株)ダイヤコンサ	ールタント	正会員	高坂	敏明
	(株)ダイヤコンサ	ールタント	正会員	佐藤	春夫
国土交通省	東北地方整備局	山形河川国道	首事務所	須藤	隆之
国土交通省	東北地方整備局	山形河川国i	首事務所	大泉	隆是

1. はじめに

東北中央自動車道東根IC~尾花沢IC区間のうち, (仮称)村山 IC 周辺は, 沈降盆地という特殊な堆積 環境のもとで形成された軟弱地盤である.このよう な地盤上の盛土の安定や長期的に継続する沈下の 低減対策として,真空圧密工法が採用されている. ここで,当地区のような厚い泥炭性地盤においても, 真空圧密工法により十分な対策効果が得られるか 確認することを目的として,試験施工が実施された. 本論文は,真空圧密工法の試験盛土における FEM 解析を用いた各層ごとの沈下および間隙水圧発生 挙動の検証結果を報告する.

2. 試験盛土の概要

当該地区の地盤構成は、図1および図2に示すよ うに自然含水比 wn=100~300%の泥炭層と wn=50 ~100%の粘性土層が互層状に堆積している.また、 層厚 1~2m 程度の砂層が挟在している.事前調査 から、盛土荷重に対して沈下対象となるのは、深度 27.1m までであった.試験施工の範囲は、48m× 73m (\Rightarrow 3,500m²), 鉛直ドレーンの間隔は 1.0m×1.0m の正方配置,打設深度は 25m である. 施工盛土厚はサーチャージ盛土を併せて 13.4m で あった.また、盛土速度の実績は、10.8cm/d であ った.以下に各層ごとの沈下量と間隙水圧の観測デ ータと、解析値との比較を行う.

3. 解析方法

解析には、関ロ・太田モデルに基づく DACSAR を用いた.また、ドレーンで改良された地盤の断面 二次元モデルでの評価は、各要素でドレーン位置に 減圧が作用した効果を表現できる macro element 法¹⁾を用いた.解析パラメータは、室内土質試験か ら算定し、**表2**に示す通りとした.

図1 試験盛土実施箇所の地盤構成

図2 土性図

表2 解析パラメータ

土層	D	٨	М	λ	к	ky (cm/sec)	E kN/m ²
Ac-u	0.0529	0.90	1.42	0.208	0.021	1. 70E-07	
Ap-u	0.0702	0.90	2.25	0.738	0.074	1.00E-07	
As-1						5.00E-05	14,000
Ap-I	0.0619	0.90	2. 25	0.651	0.065	7.00E-07	
Dc1-u	0.0359	0.90	1.42	0.130	0.013	1.00E-07	
Dp1	0.0448	0.90	1.85	0.304	0.030	5.00E-08	
Dc1-I	0.0300	0.90	1.42	0.109	0.011	5.00E-07	
Dp2-u	0.0384	0.90	1.85	0.261	0.026	8.00E-08	
Dc2-u	0.0525	0.90	1.42	0.174	0.017	5.00E-08	
Ds-u						5.00E-05	14,000
Dp2-I	0.0927	0.90	1.85	0.782	0.078	4.00E-08	
Dc2-m	0.0394	0.90	1.42	0.130	0.013	3.00E-07	

キーワード 真空圧密工法,有限要素法,泥炭,二次圧密,試験施工,気水分離方式 連絡先 〒981-3133 仙台市青葉区一番町 2-4-1 仙台興和ビル 11F㈱ダイヤコンサルタント東北支社 TEL022-263-5121

-040

4. 解析結果

実測と解析の沈下量と過剰間隙水圧の経時変化を図3に示す.同図によると各層とも,実測と解析結果の沈 下量の推移は,概ね同様の傾向を示している.また,過剰間隙水圧においても,解析結果は実測の過剰間隙水 圧の推移と同様の傾向を示していることから,地盤の実際の挙動を良好に反映できていると考えられる.但し, 各検討深度で実測値と解析値を比較すると,真空単独載荷期間では,深度7.3m,14.4m,19.7mの解析値が 実測に比べやや高い減圧効果を示した.また,深度11.0mおよび14.4mでは,盛土速度の増加に伴い解析値 が実測値より大きい値を算出する傾向にある.図4には施工段階ごとの実測と解析の過剰間隙水圧を示す.同 図より,単独載荷時,盛土開始時,減圧停止時では実測値と解析値は高い相関性があるが,盛土立上り時に関 しては解析値がやや大きい間隙水圧を示す傾向にある.

5. おわりに

沈下および過剰間隙水圧の発生挙動は, macro element 法 を用いた関ロ・太田モデルにより概ね再現が可能であること が確認された. 今後は今回の試験盛土の観測結果および FEM 解析により, 盛土速度と過剰間隙水圧および沈下の検討を行 い, 本施工での最適な盛土速度を設定する予定である.

1) Iizuka and Ohta, : A determination procedure of input parameters in elasto-viscoplastic finite element analysis, Soils and Foundations, Vol.27, No.3, pp.71-87, 1987.

竹山智英,青木孝憲,荒井亜希,太田秀樹:マクロエレメント法の真空圧密工法への適用(その1),地盤工学会第43回地盤工学研究発表会講演集,pp.887-888,2008.

