高解像度台風ー高潮結合モデルによる台風 1330 号の災害外力に関する再現実験

岐阜大学	学生会員	○豊田将也
岐阜大学	正会員	吉野 純
岐阜大学	正会員	小林智尚

1. はじめに

地球温暖化による海水面温度の上昇は、台風強度 を増加させるものと考えられ、将来的に現在よりも 強大化した台風が勢力を維持したまま日本に襲来す る可能性がある.その前兆ともいえる台風が、2013 年11月にフィリピンを襲った台風1330号である.

台風 1330 号は,温暖な熱帯海上で発生し,最盛期 には中心気圧 895hPa にまで発達し,勢力を維持した ままフィリピン中部を横断したため,タクロバンを はじめとするレイテ湾沿岸地域に高潮災害等の甚大 な被害をもたらした.しかし観測データの不備のた め,台風 1330 号の発達や高潮の発生メカニズムにつ いては十分に理解されているとはいえない.

そこで本研究では,高解像度台風-高潮結合モデ ルを構築することで,台風 1330 号の発生から消滅ま での再現実験を行う同時に,レイテ湾における高潮 発生の再現実験も行うことを目的とする.

2. 数値計算の方法

本研究では、まず、台風 1330 号の発生から消滅ま での内部構造とそれに伴う高潮を高解像度に再現す ることを目的として、高解像度な台風モデルと高潮 モデルを結合した「高解像度台風-高潮結合モデル」 を構築する.台風モデルは、メソ気象モデル MM5 (Dudhia, 1993)をベースとして、台風強度を高精度に 再現する上で不可欠な複数の海面境界物理過程を導 入しているだけでなく、台風の発生から消滅までの 内部構造を高効率かつ高分解能に再現できるよう自 動移動ネスティングを適用している(吉野ら, 2013). 台風モデルの計算設定は**表-1**に示す.高潮モデルは、 1 層非線形長波方程式モデルを用いることで、高解像 度台風モデルの出力値(地表面風速および地表面気 圧)を海面境界条件として、さらに潮汐モデル NAO の出力値(天文潮位)を側面境界条件として 15 分間 隔毎に入力する. 高潮モデルの計算設定は**表-2**に示 す.

表-1 高解像度台風モデルの計算設定

計算領域	D1	D2	D3	D4	D5
対象台風	2013年台風30号(Haiyan)				
対象時間	2013年11月4日0時Z一2013年11月11日6時Z				
水平解像度	27km	9km	3km	9km	3km
水平格子数	250 × 250	91 × 91	31 × 31	91×91	31 × 31
時間間隔	90秒	30秒	10秒	30秒	10秒
鉛直解像度	24層(1000-70hPa)				
初期·境界·同化条件	NCEP Final Analyses (1 [°] ×1 [°] 格子間隔; 6時間間隔)	D1(27km)	D2(9km)	D1(27km)	D4(9km)
自動移動ネスティング	Off	On(15分毎)	On(15分毎)	On(15分毎)	On(15分毎)
台風ボーガス	風速17.2m/s ランキン渦				
ナッジング(4DDA)	On	Off	Off	Off	Off
積雲対流過程	Kain-Fritsch cumulus	Off	Off	Off	Off
雲微物理過程	Reisner graupel				
大気境界層過程	Mellor-Yamada Level2.5 Eta PBL				
放射過程	Cloud radiation				
陸上表面過程	5-layer soil				
海洋混合層過程	Shade and Emanuel(1999)				
波飛沫蒸発過程	Fairall et al.(1994)				
粘性散逸加熱過程	Jin et al.(2007)				

表-2 高潮の計算設定

计争与国	2012年4月20日(Usiven)
刘豕口風	2013年百風30亏(Halyan)
対象時間	2013年11月7日0時Z一2013年11月9日0時Z
水平解像度	1km
時間間隔	1秒
鉛直解像度	1層
海底地形	海底地形:ETOPO1(1分×1分格子)
	海岸線:USGS Landuse(30秒×30秒格子)
初期条件	ゼロ値(u=0, v=0, h=0)
気象外力	高解像度台風モデルD5(3km格子;15分間隔)
境界条件	潮汐モデルNAO(15分間隔)

3. 計算結果

高解像度台風-高潮モデルを用いることで、台風 1330 号の全生涯の内部構造と、それに伴うレイテ湾 沿岸地域の高潮を再現した.まず、自動移動ネステ ィングの空間解像度の効果を確認するため、9km 格 子 (D2)と3km格子 (D2+D3)の2種類の感度実験を 行った.4 次元同化ナッジングの適用により、台風 1330 号の進路を正確に表現できている (図-1).D2

 キーワード 台風 1330 号,高解像度台風モデル,海洋混合層厚さ,高潮
連絡先 〒501-1193 岐阜市柳戸1-1岐阜大学大学院工学研究科環境エネルギーシステム専攻自然エネルギー研究室 TEL 058-293-2439 FAX 058-293-2431 では台風1330号の急速強化や最盛期の強度を過小評 価しているものの, D2+D3 ではより現実的に台風強 度を表現できることが明らかとなった(図-2).

ベストトラック,実線:D2,D2+D3)

また,入力値の1つである海洋混合層厚さの効果 を確認するため,フィリピン以東の海洋混合層厚さ の異なる5種類の感度実験を行った(表-3).海洋混 合層厚さを気候値で設定した場合(図-2),フィリピ ン以東の海洋混合層厚さは30m程度であるが,D2+ D3であっても台風強度を依然過小評価している.一 方,海洋混合層厚さが50mとなるCASE5の場合(図 -3),最盛期における観測された中心気圧(895hPa) に近い台風強度を再現できており,ラニーニャに近 い状態にあった2013年11月には海洋混合層厚さは 少なくとも50m以上に発達していたと推定される.

計算名	海洋混合層厚さ
CASE1	10m
CASE2	20m
CASE3	30m
CASE4	40m
CASE5	50m

CASE5 の台風気象場を気象外力として, 再現され た高潮は, タクロバンにおいて 3m を超える結果と なり(図-4), 河合ら (2014)による波浪推算結果約 2m を考慮すれば現地調査の痕跡高とよく一致する ことが明らかとなった.

図-4 タクロバンにおける潮位の時系列

4. 結語

本研究で開発した高解像度台風-高潮結合モデル を用いることで,台風 1330 号の現実的な台風強度と 高潮を再現できることが明らかとなった.また,高 精度な台風災害外力の評価のためには,リアルタイ ム観測に基づき,高解像度台風-高潮結合モデルに 正確な海洋混合層厚さを入力する必要があると結論 づけられる.