塩分を含むミストを利用した橋梁の飛来塩分付着量推定法の改良

日本大学	正会員	○長谷部寛	日本大学	(研究当時)	曽根瞭平
日本大学	(研究当時)	春木陽平	日本大学	フェロー会員	野村卓史

<u>1. はじめに</u>

沿岸域に位置する橋梁は,海からの飛来塩分による 塩害で劣化が助長される.そのため,橋梁部位ごとの 飛来塩分付着量を予測することは,維持管理上重要な 課題である.しかし,実測以外に橋梁部位ごとの付着 塩分量を評価する方法は確立されておらず,様々な検 討が進められている^{1),2)}.

著者らは、市販の超音波加湿器で生成した塩分を含 むミストを風洞内に飛散させ、ろ紙を貼付した供試体 に付着する塩分量を測定し、橋梁の飛来塩分付着量を 推定する方法を試みた³⁾.その結果、橋梁模型の面ご との付着塩分量の差異を定量的に評価することができ たが、飛散させたミストが多量に乱れを含むという問 題があった.そこで本研究では、ミストの乱れを低減 する工夫を施し、一様なミストを用いて橋梁部位ごと の付着塩分量の差異を評する方法を検討した.

<u>2. 塩分付着量の測定手順</u>

本研究では、塩分を含むミストを生成するため、エ アロゾル発生器(ATM-226,日本カノマックス)を用 いた.本装置は塩分粒子を含むミストを安定して生成 できる点が特徴であり、ミストに含まれる粒子の平均 粒径は 0.3 µm 程度と言われている.本研究では濃度 10%の塩化ナトリウム(NaCl)水溶液からミストを生 成した.なお、ミストは流れの可視化媒体としても用 いることが可能なので、付着塩分量の違いを流れ場か らも考察するため、可視化実験を同時に行った.

実験概要を図1に示す.風洞は,長さ100 cm,幅30 cm,高さ60 cmの測定部を有する押し出し型風洞を用いた.風洞風速は0.5m/sとした.測定部中央に供試体を設置した.実験供試体には辺長6 cmの正方形角柱と幅6 cmの2 主 I 桁橋を用いた.実験供試体周辺をレーザーシート(CW532-3W:カノマックス)で照射し,高速度カメラ(HSS-3G:カノマックス)により,1秒あたり250 フレームで10秒間撮影した.ミストの乱れを低減させるため,風洞の整流装置を利用した.その

 100 cm
 30 cm

 30 cm
 30 cm

 30 cm
 60 cm

 50 cm
 反射鏡

 (分解能8ビット)
 レーザーシート

図1 可視化実験の概要

図2 ガラス繊維ろ紙

図3 ポータブルイオン計

ため,風洞ファンの上流側からミストを注入した.風 洞内を塩分粒子が飛散することから,風洞の劣化を防 ぐため定期的に風洞内を清掃している.

付着塩分量を測定するため,実験供試体表面に図 2 に示すガラス繊維ろ紙(GF/B 47mm:Whatman)を貼 付した.ろ紙の性能表上の最小粒子保持機能は 1.0 µm であるが,エアロゾル発生器のミストに直接曝し,塩 分粒子量を測定したところ,ミストに曝す前と有意な 差が見られたことから,このろ紙を使用した.塩分粒 子量の測定には,図3に示すポータブルイオン計

キーワード:飛来塩分,ミスト,可視化実験,塩化物イオン
 連絡先:〒101-8308東京都千代田区神田駿河台1-8-14 E-mail: hasebe@civil.cst.nihon-u.ac.jp

(IM-32P:東亜ディーケーケー)を用い,塩化物イオン量を測定した.具体的には,塩分粒子の付着したろ紙を精製水の中で撹拌し,精製水中に溶け出た塩化物イオン量で評価した.

3. 正方形角柱の塩分付着量の測定

辺長 6 cm の正方形角柱のスパン方向中央の断面に おいて,前面,下面,背面に直径 4.7 cm のろ紙を貼付 し,塩分付着量の測定を行った.流れの可視化結果を 図 4 に示す.風は左から右に向かって吹いている.可 視化画像が不鮮明であるが,角柱の上流側ではミスト は一様である.

供試体を 30 秒間ミストに曝し, ろ紙に吸着した塩化 物イオン量を測定した.3回の測定結果の平均値を表1 に示す.表1中のろ紙単体とは, ろ紙をミストに曝さ ない状態で測定した結果である.下面や背面に比べ, 流れの衝突面である前面の増加量が大きく,供試体面 ごとの付着塩分量の差異が評価できた.図4の可視化 結果を見ると,角柱下方にはく離せん断層が見られる が,はく離せん断層内の下面や背面のミスト濃度は若 干薄い.それが付着量の差になったと考えられる.

<u>4.2主 | 桁橋モデルの塩分付着量の測定</u>

幅 6 cm, ウェブ高さ 2 cm の 2 主 I 桁橋モデル ³の, 風上側桁の前面(風上側)と背面(風下側),同じく風 下側の桁の前面と背面の計 4 か所にろ紙を貼付して実 験を行った.図5に流れの可視化結果を示し,表2に 各面のろ紙の塩化物イオン量を示す.正方形角柱の場 合と同様に,供試体の面ごとの付着塩分量に差が見ら れた.実測結果¹⁾と同様に,桁の内側部分の付着塩分 量が少ない結果となった.ただし,図4の可視化画像 が不鮮明なため,粒子の挙動と付着量の差異の関係を 十分に把握することができなかった.この点は今後の 課題である.

<u>5. まとめ</u>

本研究では、風洞の整流装置を利用することで塩分 を含むミストの気流性状を改善し、供試体に付着する 塩分量を測定した.正方形角柱と2主I桁橋モデルを 対象に検討した結果、どちらの供試体に対しても、面 ごとの付着塩分量の差異を評価することができた.今 後は可視化画像の質を改善し、粒子の挙動と付着量の 関係を明確化した上で、実測結果との定量的な比較を 行う予定である. [謝辞]本研究は、科学研究費・基盤研究(B)(課題番号23360198)の助成を受けて実施されたものである.
[参考文献]1)岩崎ら、土木学会論文集A、Vol.66、pp.297-311、2010.2)金城ら、第23回風工学シンポジウム論文集、pp.511-517、2014.3)長谷部ら、土木学会第69回年次学術講

図4 正方形角柱まわりの流れ(瞬時画像)

図5 2主I桁橋モデルまわりの流れ(瞬時画像)

表1 正方形角柱の塩化物イオン量

XⅠ 亚方形片性砂瘟化物 / X / 重					
測定場所	塩化物イオン増加量				
前面	9.2 mg				
下面	7.0 mg				
背面	6.8 mg				
ろ紙単体	5.5 mg				

表2 2主I桁橋モデルの塩化物イオン量

測定場所	塩化物イオン増加量
上流側桁の前面	6.4 mg
上流側桁の背面	4.0 mg
下流側桁の前面	3.6 mg
下流側桁の背面	5.0 mg
ろ紙単体	3.5 mg