高強度ステンレス鋼への Ramberg-Osgood 曲線の適用性の検証

1. はじめに

ステンレス鋼は、従来の橋梁主部材等に使用されて いる構造用炭素鋼に比べて優れた耐食性を有している. 特に、近年開発されてきた高強度ステンレス鋼は高い 強度を有するため、これを構造物に用いることで構造 物の薄肉軽量化が図られる.このように優れた機能を 有するステンレス鋼を活用するためには、対象とする 構造物の力学的特性を調べるうえでの数値計算に用い る応力ひずみ関係を精度良好かつ簡便に表現すること が必要とされる.既往の研究において、宮嵜ら¹⁾は Ramberg-Osgood 曲線を用いてステンレス鋼の応力ひ ずみ関係を簡便に表現できることを示した.しかし、 これは比較的強度の低いステンレス鋼を対象としてい る.そこで本研究は、高強度ステンレス鋼への Ramberg-Osgood 曲線の適用性を検証する.

2. 対象とする高強度ステンレス鋼

本研究で対象とする高強度ステンレス鋼は,オース テナイト系 SUS304N2,二相系 SUS329J3L, SUS329J4L, スーパー二相系 S32750,リーン二相系 S82122, S32304 の6鋼種である.図1および表1は,これらステンレ ス鋼の材料強度について,各鋼種の厚板から切り出し た材料試験片を用いた引張試験より得られた応力ひず み関係およびそのオフセット耐力を示している.表1 より,全てのステンレス鋼の0.2%耐力はJIS または ASTMで規定される0.2%耐力に比べ約1.1倍の強度を 有していることが分かる.

長岡工業高等専門学校	学生会員	○佐藤	信輔
長岡工業高等専門学校	正会員	宮嵜	靖大
大阪大学大学院	正会員	奈良	敬

高強度ステンレス鋼への Ramberg-Osgood 曲線の 適用性

材料試験で得られた応力ひずみ関係は、次式で表す Ramberg-Osgood 曲線で表現する.

$$\varepsilon = \frac{\sigma}{E} + K \left(\frac{\sigma}{E}\right)^n$$
 (1)

ここで、 ϵ はひずみ、 σ は応力、Kおよびnは式(2)から式(5)における材料定数を表す.

$$K = \left(\frac{1}{m_1} - 1\right) \left(\frac{\sigma_1}{E}\right)^{1-n} = \left(\frac{1}{m_2} - 1\right) \left(\frac{\sigma_2}{E}\right)^{1-n} (2)$$

$$n = 1 + \frac{\log\left(\frac{m_2}{m_1}\frac{(1-m_1)}{(1-m_2)}\right)}{\log\left(\frac{\sigma_1}{\sigma_2}\right)} \quad (3)$$

$$m_1 = \frac{1}{1 + \frac{a_1}{\sigma_1/E}} \quad (4), m_2 = \frac{1}{1 + \frac{a_2}{\sigma_2/E}} \quad (5)$$

ここで, *σ*₁および*σ*₂は選定する 2 つのオフセット耐力, *a*₁および*a*₂は選定したオフセット耐力の%を小数で示 した値を意味する.このオフセット耐力の選定方法は, 以降で述べる.表 2 は,各鋼種で検討したオフセット 耐力の組合せを示す.同表には,比較のため既往の研 究²⁾で Ramberg-Osgood 曲線の適用性を確認した SUS304 および SUS316 についても示している.同表中 の丸および三角は,Ramberg-Osgood 曲線と実験値の誤 差が 5%以下および 5%を超えるものを表している.し たがって,同表において各ひずみにて全て丸を示す結 果のものは,実験値の再現性が良好であると判断する

· 细種 · 垢厚(mm)	Е	0.2% 耐力	0.3% 耐力	0.4% 耐力	0.5% 耐力	耐力(MPa)	
<u></u> 亚門 个里	项性 1次浮-(IIIII) (GPa)	(Mpa)	(Mpa)	(Mpa)	(Mpa)	(JISorASTM)	
SUS304N2	20	180	400	420	434	443	345以上
SUS329J3L	20	185	488	512	526	536	450以上
SUS329J4L	10	187	606	627	639	647	450以上
S32750	10	236	626	652	667	677	550以上
S32304	12	205	596	609	-	-	400以上
S82122	12	229	511	526	-	-	400以上
キーワード ア	高強度ステン	/レス鋼.	応力ひずみ関係	系. Ramberg-C	Dsgood 曲線、オ	フセット耐力	

表1 対象とするステンレス鋼のオフセット耐力

連絡先 〒940-8532 新

〒940-8532 新潟県長岡市西片貝町 888 TEL0258-34-9439

表2 各鋼種のオフセット耐力の組合せによる Ramberg-Osgood 曲線の精度

ひずみ	$a_1 = 0.001, a_2 = 0.002$				<i>a</i> ₁ =0.002, <i>a</i> ₂ =0.003			<i>a</i> ₁ =0.003, <i>a</i> ₂ =0.004			<i>a</i> ₁ =0.004, <i>a</i> ₂ =0.005				<i>a</i> ₁ =0.005, <i>a</i> ₂ =0.006					
鋼種	1%	3%	5%	10%	1%	3%	5%	10%	1%	3%	5%	10%	1%	3%	5%	10%	1%	3%	5%	10%
SUS304N2	Δ	Δ	Δ	Δ	0	Δ	0	0	0	0	0	0	0	0	0	0	0	0	0	Δ
SUS329J3L	Δ	Δ	Δ	Δ	0	Δ	Δ	Δ	0	0	Δ	Δ	0	0	0	0	0	0	0	0
SUS329J4L	0	Δ	Δ	Δ	0	0	Δ	Δ	0	0	0	0	0	0	0	0	0	0	0	0
S32750	Δ	Δ	Δ	Δ	0	Δ	Δ	Δ	0	0	0	Δ	0	0	0	0	0	0	0	0
S32304	0	0	0	Δ	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-
S82122	0	Δ	Δ	Δ	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-
SUS304	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SUS316	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

ことができる. 図 2 は各鋼種の無次元化した応力ひず み関係を示す. 同図の縦軸は引張試験により得られた応 力 σ を第1オフセット耐力 σ_1 で除した値を,横軸は引張 試験により得られたひずみ $\epsilon \sigma_1$ 時のひずみ ϵ_1 で除した 値である. 同図より,表 2 で示した Ramberg-Osgood 曲 線と実験値の誤差が5%以下のオフセット耐力の組合せ の場合は同図中の色付けした範囲を通ることがわかる.

図3は、SUS329J3Lの引張試験結果と本研究で検討 した Ramberg-Osgood 曲線を示している.同図より、表 2で示したオフセット耐力点として0.4%と0.5%を用い た場合の Ramberg-Osgood 曲線は、1%、3%、5%、10% の各ひずみ時の実験結果との誤差が1%以下となり、高 い精度で再現できることがわかる.紙面の都合上割愛す るその他のステンレス鋼についても、表2で良好とし たオフセット耐力を用いた Ramberg-Osgood 曲線は、図 3の結果と同様に各ひずみにおける実験結果との誤差 は5%以下となり、十分な再現性を確認できた.

4. おわりに

本研究で得られた内容は次の通りである.(1)本研究 で選定したオフセット耐力を用いた Ramberg-Osgood 曲 線は、高強度ステンレス鋼に対して、引張試験結果との 誤差が、1%、3%、5%、10%の各ひずみにおいて5%以 下となる.(2)実験結果を良好に再現できるオフセット 耐力の選定は、無次元化した応力ひずみ関係における一 定の範囲を通るものの中から対応するものを用いると 良いことを明らかにした.

最後に,本研究の高強度ステンレス鋼の一部の材料試 験データは,一般社団法人日本鋼構造協会ステンレス技 術・標準委員会より提供いただいた.ここに記し,謝意 を表します.

参考文献

宮嵜靖大,奈良敬: ステンレス鋼の弾性係数の変化および
Ramberg-Osgood 曲線の適用性について,平成 23 年度土木学
会第 66 回年次学術講演会,I-646, CD-ROM, 2011.

図1 対象とする各鋼種の応力ひずみ関係

図2 無次元化した応力ひずみ関係

図 3 SUS329J3L の応力ひずみ関係

2)井口建斗,石井孝明,宮嵜靖大,宮下剛:オーステナイト系 およびマルテンサイト系ステンレス鋼への Ramberg-Osgood 曲線の適用性について,第31回土木学会関東支部新潟会研 究調査発表会, pp88-89, 2013.11.