損傷モデルと塑性モデルを用いた RC はりの3次元破壊シミュレーション

茨城大学	学生会員	○相馬	悠人
茨城大学	学生会員	根本	優輝
茨城大学	正会員	車谷	麻緒

1. はじめに

1995年に兵庫県南部地震が生じた際に,鉄筋コンク リート構造物に甚大な被害が生じた.そのほとんどが 鉄筋コンクリートに生じた曲げ破壊やせん断破壊によ るものである.曲げ破壊は靱性があり,延性的に徐々 に破壊するため,設計上は曲げ破壊で終局に至ること が望ましいとされている.対して,せん断破壊は靱性 がなく,脆性的に一気に破壊するため,構造物の形状 保持が困難になり危険である.よって,このような危 険な破壊を未然に防ぐために鉄筋コンクリートの破壊 性状を予測することは非常に重要である.

そこで本研究では、非線形 FEM を用いた破壊シミュ レーションにより、鉄筋の幾何形状を再現し、基本的 な材料モデルを使用することで、少ない材料パラメー タで RC はりの曲げ破壊およびせん断破壊を再現する. また、実験結果と比較することにより、本解析手法が 実験結果を再現可能であることを示す.

2. 鉄筋コンクリートの数値解析手法

2.1 鉄筋の材料モデル

鉄筋の材料モデルには,非線形等方硬化則に基づ く von-Mises の弾塑性モデルを適用する¹⁾.用いた降伏 関数 *f* は次式で表される.

$$f = \sigma_{\rm e} - \sigma_{\rm v0} - Q(1 - e^{-bp}) \tag{1}$$

ここで、 σ_e は von - Mises の相当応力、 σ_{y0} は初期降伏 応力、pは相当塑性ひずみ、Qとbは非線形硬化を表 すための材料定数である.

2.2 コンクリートの材料モデル

本研究では、コンクリートの破壊力学に基づく等方 性の損傷モデルを適用する²⁾.引張破壊によるひび割 れ部の結合力を各要素での応力で表現する.構成則は 次式で表される.

$$\boldsymbol{\sigma} = (1 - D)\boldsymbol{c} : \boldsymbol{\varepsilon} \tag{2}$$

ここで、 σ はコーシー応力テンソル、cは弾性係数テン ソル、 ε はひずみテンソルである. Dは損傷の度合い

図-1 実験概要および解析モデル

表-1 材料パラメータ

コンクリート		鉄筋		
ヤング率 E	29 GPa	ヤング率 E	210 GPa	
ポアソン比ぃ	0.2	ポアソン比ぃ	0.3	
強度比 k	20	降伏応力 σ_{y0}	400 MPa	
破壊エネルギーG _f	0.1 N/mm	Q	180 MPa	
破壊発生ひずみ K ₀	1.0×10 ⁻⁴	b	15	

を0≤D≤1で表す損傷変数であり,損傷がなければ 0, 完全に破壊すれば1となる.

損傷の進展を評価するために、ひずみテンソルをス カラー値に変換した等価ひずみを使用する. コンクリ ートの圧縮に強く、引張に弱いという材料特性を付加 した等価ひずみは次式で表される.

$$\varepsilon_{\rm eq} = \frac{k-1}{2k(1-\nu)}I_1 + \frac{1}{2k}\sqrt{\left(\frac{k-1}{1-2\nu}I_1\right)^2 + \frac{12k}{(1+\nu)^2}J_2}$$
(3)

ここで、vはポアソン比、kは圧縮引張強度比、 I_1 はひ ずみテンソルの第 1 不変量、 J_2 は偏差ひずみテンソル の第 2 不変量である.また、変形履歴における等価ひ ずみの最大値を $\kappa \ge 0$ で表すことにより、損傷変数 $D(\kappa)$ は次式で表される.

$$D(\kappa) = 1 - \frac{\kappa_0}{\kappa} \exp\left[-\frac{E\kappa_0 h_e}{G_f} (\kappa - \kappa_0)\right]$$
(4)

キーワード RC はり,破壊シミュレーション,非線形 FEM,損傷モデル,弾塑性モデル

連絡先 〒316-8511 茨城県日立市中成沢町 4-12-1 茨城大学日立キャンパス TEL: 0294-38-5004 FAX: 0294-38-5268

ここで、 κ_0 は破壊発生ひずみ、 G_f は破壊エネルギーである.

3. 実験結果と解析結果の比較・考察

3.1 実験概要および解析条件

曲げ破壊およびせん断破壊を観察するため,せん断 補強筋を10本,6本,0本配筋した3パターンのRCは りを作成し4点曲げ試験を行った.供試体寸法を図-1 に示す.実験は破壊に至るまで荷重を与え,ひび割れ 進展状況および荷重-変位関係について観察した.な お,変位量はRCはり上面の中央の点で計測を行った. 解析モデルは対称性を考慮し,x,z軸方向の面に対

図-3 荷重-変位関係

称条件を付加し、1/4 モデルとした. 解析モデルの要素 分割は、四面体要素を用いて、異形鉄筋およびせん断 補強筋の幾何形状が忠実に再現されるように行った. 解析条件として与えた材料パラメータを表-1 に示す. 解析モデルの節点数・要素数は、せん断補強筋 10 本が 約 15 万節点・約 85 万要素、6 本が約 14 万節点・約 78 万要素、0 本が約 12 万節点・約 70 万要素である.また、 図-1 の載荷点の矢印方向にせん断補強筋 0 本は強制変 位量を 4 mm、せん断補強筋 6 本および 10 本は 12 mm を与え 400 step で解析を行った.

3.2 解析結果

図-2 に実験結果と解析結果の表面ひび割れの結果を 示す.また,図-3 に荷重-変位関係の結果を示す.解 析結果は表面ひび割れおよび荷重-変位関係ともに, 実験結果を概ね再現できた.さらに,材料パラメータ は変えずに,解析モデルのせん断補強筋の本数を減ら すだけで,延性的な曲げ破壊の挙動から脆性的なせん 断破壊の挙動に移行する様子を再現できた.

4. おわりに

本解析手法が RC はりの曲げ破壊およびせん断破壊 を少ない材料パラメータかつせん断補強筋の本数の違 いのみで再現可能であることを示した. さらに,実験 結果と解析結果を比較し,実験結果の破壊性状を概ね 再現可能であることを示した.

参考文献

- 1) 寺田 賢二郎(監訳):非線形有限要素法-弾塑性解 析の理論と実践,森北出版,2012.
- 2) 車谷麻緒,根本優輝,岡崎慎一郎,廣瀬壮一:異形 鉄筋周辺のコンクリートに形成する内部ひび割れ モードの再現シミュレーション,日本計算工学会 論文集,Vol.2014, pp.20140008, 2014.