従来型ポケット式落石防護網の実施例に対する衝撃応答解析

金沢大学 ○学生員 上杉拓矢 金沢大学 正 前川幸次 清水建設 小野健弘 (株)ライテク 正 難波正和

1. はじめに

落石対策便覧の簡易式¹⁾による従来型ポケット式落石 防護網の設計では、原則として金網の破壊を先行させ、 その金網への作用力を基準として可能吸収エネルギー E_T が算出される.この E_T が落石エネルギーEより大きく、 主要部材力が許容値に入るよう設計されている.本研究 は簡易式で設計されたポケット式落石防護網(設計事例 7件)についてLS-DYNAを用いた衝撃応答解析を行い、 挙動と安全性の確認を行った.

2. 設計事例と解析モデル

図-1は7事例の概略形状,表-1は諸元を表し, E_N :金網の最大強度時の作用力と金網の想定変形量により算出 される吸収エネルギー, E_R :1段目および2段目の横ロ ープの吸収エネルギー, E_P と E_{HR} :支柱と吊ロープの吸 収エネルギー, E_L :衝突後の落石と防護網の影響範囲(幅 a x 高 b)が一体となって運動するものとして運動量保存 則の下で得られる衝突前後のエネルギー差(ロス), E_T : 可能吸収エネルギー($=E_N+E_R+E_P+E_{HR}+E_L$)である.この Eと E_T による設計は簡易であるが不明確な点もあり,特 に E_L の適合性の問題提起を受け,実験や解析が行われ², 設計法の修正等が行われた³⁾.その結果,簡易設計式の 適用範囲は, E_T は150kJ以下とし,防護網の影響範囲は 幅 12m以下×高さ12m以下に定められている.

筆者らはロープの緩衝装置を有するポケット式落石防 護網の衝撃応答解析⁴⁾において LS-Dyna による解析モデ ルの詳細を示しており, 簡潔に紹介する. 各事例の網目

表−1 従来型ポケット式落石	防護網の設計事例
------------------	----------

	No.1	No.2	No.3	No.4	No.5	No.6	No.7
落石重量 W(kN)	1.64	2.41	2.41	0.11	0.11	2.08	1.41
落石径 D(m)	0.5	0.56	0.56	0.2	0.2	0.54	0.47
落石エネルギーE(kJ)	58.7	95.5	33.3	3.08	1.88	26.2	39.4
E _N +E _R +E _P +E _{HR} (kJ)	43.3	31.9	19.0	6.5	6.5	18.1	26.5
金網の影響範囲 axb(m ²)	12x <mark>20</mark>	12x10	12x12	12x <mark>20</mark>	12x20	12x10	12x7
金網素線径 (mm)	φ5	φ4	φ 3.2	φ 3.2	φ 3.2	φ 3.2	φ4
エネルギーロス E _L (kJ)	54.8	72.1	23.5	3.0	1.9	17.9	30.2
可能エネルギーE _T (kJ)	98.1	104	42.5	9.5	8.4	36.0	56.7
<u>主ロープ</u> 3×7G/O	φ18	φ16	φ14	ϕ 14	φ14	φ14	φ16
横ロープ長 L _h (m)	42	81	36	25~110	55	37	91
縦ロープ長 L _v (m)	65	10	25	25 ~ 45	40	10	7
横ロープ基本間隔 5 m, 縦ロープ・柱間隔 3 m, 吊ロープ長 10 m は同じ							

キーワード:ポケット式落石防護網,衝撃応答解析,簡易設計法 連絡先:〒920-1192 金沢大学理工研究域 環境デザイン学系 Tel & Fax 076-234-4602

は全て 50×50 mmであるが,解析時間短縮のために落石の 接触予想領域の網目寸法および素線断面積を 2.83 倍,他 の領域は 5.66 倍として金網の引張強度(kN/m)と質量を一 致させた.素線の材料特性は降伏点 240 MPa と引張強度 400 MPa のバイリニアとし, cable 要素と truss 要素を組み 合わせて破断ひずみ(30%)を考慮した.落石は EOTA⁵⁾の 形状で,設計どおり 1 段目と 2 段目の横ロープの中間に 衝突させた.減衰定数は 0.05 とし,防護網の衝突前の自 重による安定形状解析は行っていない.

3. 解析結果

表-1の落石エネルギーEおよび可能吸収エネルギーEr

を与えた解析では、全事例で金網の破断はなく落石は捕 捉されたが、防護網の応答は落石エネルギーや防護網の 寸法によって異なった.図-1は落石エネルギーEの下で の最大突出時の合成変位レベルを正面図で表す.ポケッ ト式落石防護網の縦ロープ下端は最下段の横ロープと三 方クリップで結合されているだけで地盤アンカーがない ため、特に防護網の延長が長く高さが低い No.2 や7 では 落石の突出時に、最下段横ロープが大きく迫り上がる.

図-2 は No.1 の横ロープと吊ロープ張力の時刻歴を示 す. これらの張力は落石衝突点を囲む 1 段目と 2 段目の 横ロープおよび左右の吊ロープの値である.設計では金 網の破壊を先行させ、そこから算出されるロープ張力を 許容張力(表-2 の最下欄参照)で照査する.安全率は、 縦・横ロープでは 2.0 とし、吊ロープでは落石の直撃の 可能性や重要度から 3.0 としている.図-2 から、可能吸 収エネルギーErの下で、No.1 の横ロープ張力は許容値以 下であるが、吊ロープ張力は許容張力を大きく超過して いる.ただし、落石は捕捉された.

表-2 は各事例の設計落石エネルギーE と可能吸収エネ ルギーErの下での解析による横ロープと吊ロープの最大 張力(赤字は許容張力を超過)を表す.Eの場合に比べ て Erの下では許容張力を超過するケースは増え,No.3 の吊ロープは許容張力の1.1倍,No.6とNo.7の2段目横 ロープはそれぞれ1.2倍と1.07倍であるが,No.1の吊ロ ープは2.5倍にもなっている.No.1の吊ロープの自重に よる設計初期張力は19.4kNであり,これは許容張力に比 べれば小さいが,他の事例に比べると4~14倍であり, 防護網の自重は吊ロープ張力の応答に影響すると考えら れる.実験²⁰においては,最下段横ロープの張力が衝突 位置の上・下横ロープの張力に比べて無視できない値が 計測されている.最下段横ロープの張力は設計では検討

表-2 横ロープ・吊ロープの最大張力

		~ -	12.5					~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
	Е	設計:	エネル・	¥—EI	こよる	Ет	可能コ	ニネルキ	≓—Е _т I	こよる
	(kJ)	1段横	2段横	左吊	右吊	(kJ)	1段横	2段横	左吊	右吊
No1	58.7	36	54	113	111	98.1	51	62	130	131
No2	95.5	36	46	36	36	104	39	51	39	39
No3	33.3	26	37	32	31	42.5	27	33	36	36
No4	3.1	33	41	10	11	9.5	33	40	12	12
No5	1.9	26	22	12	12	8.4	28	20	21	21
No6	26.2	23	53	11	12	36.0	26	59	14	15
No7	39.4	54	54	8	8	56.7	47	63	20	20
ロープ径(破断強度(kN)、構・吊ロープの許容張力(kN)の公称値)										

No.1 (157, 79•52), No.2,7(120, 60•40), No.3-6(100, 50•33)

されないが、落石エネルギーEの下での解析結果は図-3 のようになる.解析ではロープの材料特性をバイリニア とし、実験データによる強度(降伏・破断)は ϕ 18(153・ 194)、 ϕ 16(121・153)、 ϕ 14(94・119)を用いており、破断 はしていない.しかし、No.2以外は許容張力を超えてお り、No.4 は破断強度(公称値)も超えている.

表-3 は衝突エネルギー(主に衝突速度)を変えての解 析により推定した各防護網の終局限界エネルギー E_U とそ の状態である. E_U は E_T の4~26倍もあり、ロープが破断 したものはなく、主に金網の破壊により落石が貫通した.

約日阳用エラルギーD---レスの件能

	$E_T(kJ)$	限界 Eu(kJ)	Eu/Et	∆または×の状態			
No.1	98.2	$400 \circ -450 \times$	4.1	網貫通×			
No.2	104.0	$800 \circ - 850 \times$	7.7	下部迫り上がり・網大破×			
No.3	42.5	$400\Delta - 450 \times$	9.4	捕捉·網大破△			
No.4	9.5	$250\Delta - 300 \times$	26.4	捕捉·網大破△			
No.5	8.4	$100 \circ -150 \times$	12.0	網貫通×			
No.6	36.0	$300 \circ -350 \times$	8.3	網貫通×			
No.7	56.7	$350\Delta - 400 \times$	6.2	下部迫り上がり△			

4. おわりに

防護網の影響範囲と EL の適合性については検討中で ある.本研究は科研費(26420456)の助成を受け、メーカ ー各社から設計事例の提供を受けた.謝意を表します.

参考文献

1) 日本道路協会: 落石対策便覧, 2000, 2) 山口・他4: 従来型 ポケット式落石防護網の実規模重錘衝突実験, 鋼構造年次論文 報告集, 第21巻, pp.104-110, 2013, 3) 日本道路協会: ポケッ ト式落石防護網の設計について, 2013, 4) 前川・他3: ポケッ ト式落石防護網のシミュレーション解析に関する研究, 構造工 学論文集, Vol.57A, pp.1134-1144, 2011, 5) EOTA: ETAG27 of Falling Rock Protectionkits, 2008.