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1. INTRODUCTION 
Although there are several precise models for estimating the seismic performance of a corroded reinforced concrete (RC) 
bridge structure, seismic reliability assessment models considering the effect of steel corrosion are currently very scarce 
in the literature. Therefore, it is very difficult to evaluate the seismic safety of a deteriorated RC structure and to 
determine how long the structure would have a safety level higher than the threshold. For an existing RC bridge, 
inspection results could be used to estimate the current level of material deterioration. It is important to evaluate the 
effect of steel corrosion in the plastic hinge of the bridge pier on the deterioration of the seismic ductility capacity. 
     In this study, the methodology to estimate the average steel weight loss and variance of the local average (hereafter, 
total variance) in plastic hinge of an existing RC bridge pier is presented based on previous experimental results of 
corroded RC members acquired by X-ray technology. A procedure for estimating the seismic reliability of an existing 
RC bridge pier in a marine environment is established based on the inspection data considering the spatial distribution of 
steel corrosion. The mean and total variance of the steel weight loss will be used to resolve the epistemic uncertainties 
associated with the prediction of steel weight loss using Sequential Monte Carlo Simulation (SMCS). Finally, the 
updated cumulative time failure probability of the RC bridge pier is presented in an illustrative example. 
  
2. PROCEDURE FOR ESTIMATING THE LIFE-CYCLE SEISMIC RELIABILITY OF A CORRODED RC 

BRIDGE PIER IN A MARINE ENVIRONMENT 
 
 

 

 

 

 

 

 

 

                         

                                                                                    

 
 

      Fig. 1 Framework for estimating the life-cycle seismic reliability of an RC bridge structure in a marine environment 
 

As shown in Fig. 1, in Part A, the annual probability of the exceedance of the seismic capacity can be obtained. In Part B, 
the steel weight losses at time t after construction are calculated. The combination of the results of Part A and Part B 
derives the cumulative time failure probability for new RC structure (Akiyama et al. 2011). Since the inspection results 
are provided for an existing structure, the model uncertainties associated with the prediction of steel corrosion 
represented by the multiple random variables could be updated by SMCS, even if the relationship between these random  
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variables and the inspection results are nonlinear, and non-Gaussian variables are involved (Akiyama et al. 2010,Yoshida 
2009). Based on the updated random variables, the structural failure probability can be obtained after inspection. 
 
3. METHODOLOGY TO ESTIMATE THE AVERAGE STEEL WEIGHT LOSS AND THE TOTAL 

VARIANCE OF A PLASTIC HINGE OF AN EXISTING RC BRIDGE PIER (PART D) 
The steel weight loss in the plastic hinge of an RC bridge pier can be estimated based on discretely distributed 
measurements of steel weight loss over the entire RC bridge pier. The parameters to reproduce the spatial random field of 
steel corrosion in spatial statistics are determined based on the experimental results of corroded RC members taken by 
X-rays. By semi-variogram calculation, Kriging interpolation, and the statistical error estimation proposed by Honjo and 
Otake (2013), the mean and total variance of the steel weight loss in the plastic hinge of the RC bridge pier could be 
estimated depending on the inspection results and the number of inspection points. The limited number of inspection 
points increases the total variance and decreases the seismic reliability of the corroded RC bridge pier analyzed.  
 

 

 

 

 

 
 

Fig. 2 Methodology of the integration of the spatial variability of corrosion into the obtained inspection result 
 

As a case study, Fig. 3 shows the results of the updated steel weight loss and cumulative time failure probability of 
an existing bridge pier in which the estimated mean and total variance of the steel weight loss in the plastic hinge are 3.07% 
and 0.21, respectively. It is assumed that the inspection results are provided at 30 years after construction, and the bridge is 
located in Niigata city. The cumulative time failure probability at 30 years after construction is much smaller than that 
before updating since the epistemic uncertainties are decreased by SMCS to be consistent with the inspection results. 
 

                                 
Fig. 3 Relationship between (a) steel weight loss (%) and (b) cumulative time failure probability and time after 

construction (year) based on the inspection results 
 
4. CONCLUSIONS 
A novel procedure to estimate the life-cycle seismic reliability of an existing RC bridge pier in marine environment by 
considering a spatial steel corrosion distribution is presented. A more accurate reliability assessment could be performed 
since parameters associated with the prediction of steel corrosion are updated to be consistent with inspection results. 
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