東北地方太平洋沖地震津波により被災した橋台周辺盛土の被害把握

筑波大学大学院 学生会員 〇高橋 和慎

筑波大学 正会員 庄司 学 筑波大学 水越 湧太

1. 目的:東北地方太平洋沖地震津波により被災した橋台 周辺盛土を対象として Google Earth が公開する衛星画像を 基に被害把握を行う.盛土法面における被覆・擁壁の有無 及び河川堤防との接続状況を考慮した上で¹⁾,最大浸水深 *ID_{max}*,越流継続時間*T_{oD}*及び流速*V_s*の無次元量と盛土流出面 積率*A^{*}_w*の関係を明らかにする.

2. 橋台周辺盛土と被害把握の方法:対象とする橋台は衛 星画像による被害把握が可能な計 50 橋台²⁾である(図 1). 橋 台前面盛土,背面盛土,側面盛土及び取付盛土で構成され る橋台周辺盛土の流出面積A_wを橋台周辺盛土の面積A_eで除 し盛土流出面積率A^{*}_wで評価する(図 2, 3). 盛土の境界及び 法尻・輪郭並びに路面アスファルトや植生の消失領域を航 空レーザ測量結果,橋梁の構造図面,調査写真及び Google Earth のストリートビュー画像を基に特定し, A_e及びA_wを 算定した.

3. 津波作用の無次元量の算出:東北大学で開発された TUNAMI-CODE(文献[3])を動的な断層破壊及び粗度係数の 空間分布を適用できるプログラムに修正して津波の伝播及 び浸水の数値シミュレーションを行い,橋台背面盛土の重 心位置での浸水高及び流速の時刻歴波形を算出し(図 4),最 大浸水深 ID_{max} ,越流継続時間 T_{oD} 及び流速 V_s の無次元量を算 出した. ID_{max} は盛土の比高 h_e で除すことで無次元水位 ID_{max} とした. T_{oD} は水深 50m となる沖合での津波の周期Tで 除すことで無次元越流時間 T_{oD} とした. V_s は最大流速に達し た後に最大水位に到達する前の時刻における流速と定義し, 同時刻での浸水高IH'及び重力加速度gを用いてフルード数 $F_r(=V_s/\sqrt{gIH'})$ を算出した. $xsi, ID_{max}, T_{oD}, V_s$ 及びIH'は 押し波に限定して算定している.

4. 津波作用と盛土流出面積率A_wの関係:図 5(a)より,26 橋台(No.4,5,14,15,25のA1,No.8,9,10,11,12,13,16,17, 20のA1A2,No.18,24,27のA2)は、ID^{*}_{max}が1.90~33.96 の大きな水位の作用を受け、A^{*}_wが0.58以上の高い値を示した.なお,No.15のA1A2における顕著に低い比高での無次 元化によりID^{*}_{max}がそれぞれ33.96及び20.89と他と比べて 極めて高い値になっていることに留意が必要である.これらの26橋台では,No.5のA1のT^{*}_{0D}が0.03と例外的に低い

キーワード 東北地方太平洋沖地震津波,橋台周辺盛土,衛星画像,盛土流出面積,最大浸水深,越流継続時間 連絡先 〒305-8573 茨城県つくば市天王台 1-1-1 筑波大学大学院システム情報工学研究科 TEL 029-853-7368

図-5 津波作用と盛土流出面積率A*wの関係(流出メカニズム M-1:赤色, M-2:青色, M-3:緑色)

が, T_{op}及びF_rも 0.10~0.40 及び 0.19~1.07 と相対的に高く,非常に大きな水量によって盛土が流出したと推察さ れる. 一方, 6橋台 (No.21, 27のA1, No.26のA1A2, No.15, 25のA2) については, 先述した No.15のA2のIDmaxを除き, ID*maxが 1.16~5.61 と相対的に低く, T*DD 及びFr も同様に 0.21~0.38 及び 0.51~0.96 と相対的に低い値であり,盛土 に作用する水量が少なかったために、Awが 0.39以下の低い値となった.このように津波特有の押し波及び引き波の 圧倒的な水量によって盛土が流出するメカニズム(M-1)が明らかとなった.図5(b)より,4橋台(No.19,23のA1A2) はFrが 0.18~0.24 と相対的に低いながら、ID*max及びTopが 1.65~2.87 及び 0.23~0.72 と相対的に高く、A*wが 0.77 以上の高い値を示しており、盛土の高さに対して津波が長時間にわたって越流した結果と考えられる.一方,10橋 台 (No.24 の A1, No.1, 2, 3, 7 の A1A2, No.5, の A2) は、 F_r が 0.18~1.07 と高いながら ID_{max}^* 及び T_{OD}^* が 1.25~8.06 及び 0.02~0.12 と低く, Awが 0.09~0.62 の低い値を示しており, 越流したものの水位が低く継続時間が短かったた めと考えられる.以上のように盛土の高さ以上の継続した越流による盛土の流出メカニズム(M-2)が明らかとな った. 図 5(c)によれば、2 橋台 (No.6 の A1A2) は、ID* ax及びT*D が 1.24~1.29 及び 0.08~0.09 と極めて低いもの のFrが 1.12~0.51 と高く, Awが 0.69 以上の高い値を示しており, 津波の流れ場による摩擦力が大きく作用したもの と推察される.一方,2橋台(No.22のA1A2)は、ID*max及びT*D が 15.69~17.61及び 0.27~0.28と非常に大きいも ののFrが 0.15~0.16 と低く,生じた摩擦力も小さくなったためにAwが 0.22 以下の低い値となっている.このように 津波の流れ場における流速に伴い生じる摩擦力によって盛土が流出するメカニズム(M-3)が明らかとなった. 5. **まとめ**: 東北地方太平洋沖地震津波により被災した橋台周辺盛土の流出面積と津波作用の関係を分析した結果, (1) 津波特有の押し波及び引き波の圧倒的な水量による流出メカニズム, (2) 盛土の高さ以上の継続した越流による 流出メカニズム,(3) 津波の流れ場における流速に伴い生じる摩擦力による流出メカニズムが明らかになった.

謝辞 東北大学の今村文彦先生及び越村俊一先生に津波シミュレーションに関して貴重なご助言を賜りました.また,国土交通省平成26年度
「津波に強い道路構造物の研究開発」(代表者:幸左賢二・九州工業大学教授)の助成を得て実施されました.関係各位に謝意を表します.
参考文献 [1] 高橋和慎,庄司学:橋台周辺部の津波被害把握とその特徴,第17回性能に基づく橋梁等の耐震設計に関するシンポジウム講演論
文集,土木学会,pp.147-153,2014年. [2] Takahashi, K. and Shoji, G.: Damage Assessment of Bridges Subjected to the 2011 off the Pacific Coast of Tohoku
Earthquake Tsunami by Analyzing Satellite Images, International Symposium on Earthquake Engineering, JAEE, Vol.2, 2013. [3] Disaster Control Research
Center (DCRC), Tohoku University: TUNAMI-CODE Tohoku University's Numerical Analysis Model for Investigation of Tsunami, 2009.